63 resultados para Bypasses.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autism spectrum conditions (autism) affect ~1% of the population and are characterized by deficits in social communication. Oxytocin has been widely reported to affect social-communicative function and its neural underpinnings. Here we report the first evidence that intranasal oxytocin administration improves a core problem that individuals with autism have in using eye contact appropriately in real-world social settings. A randomized double-blind, placebo-controlled, within-subjects design is used to examine how intranasal administration of 24 IU of oxytocin affects gaze behavior for 32 adult males with autism and 34 controls in a real-time interaction with a researcher. This interactive paradigm bypasses many of the limitations encountered with conventional static or computer-based stimuli. Eye movements are recorded using eye tracking, providing an objective measurement of looking patterns. The measure is shown to be sensitive to the reduced eye contact commonly reported in autism, with the autism group spending less time looking to the eye region of the face than controls. Oxytocin administration selectively enhanced gaze to the eyes in both the autism and control groups (transformed mean eye-fixation difference per second=0.082; 95% CI:0.025–0.14, P=0.006). Within the autism group, oxytocin has the most effect on fixation duration in individuals with impaired levels of eye contact at baseline (Cohen’s d=0.86). These findings demonstrate that the potential benefits of oxytocin in autism extend to a real-time interaction, providing evidence of a therapeutic effect in a key aspect of social communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perception is linked to action via two routes: a direct route based on affordance information in the environment and an indirect route based on semantic knowledge about objects. The present study explored the factors modulating the recruitment of the two routes, in particular which factors affecting the selection of paired objects. In Experiment 1, we presented real objects among semantically related or unrelated distracters. Participants had to select two objects that can interact. The presence of distracters affected selection times, but not the semantic relations of the objects with the distracters. Furthermore, participants first selected the active object (e.g. teaspoon) with their right hand, followed by the passive object (e.g. mug), often with their left hand. In Experiment 2, we presented pictures of the same objects with no hand grip, congruent or incongruent hand grip. Participants had to decide whether the two objects can interact. Action decisions were faster when the presentation of the active object preceded the presentation of the passive object, and when the grip was congruent. Interestingly, participants were slower when the objects were semantically but not functionally related; this effect increased with congruently gripped objects. Our data showed that action decisions in the presence of strong affordance cues (real objects, pictures of congruently gripped objects) relied on sensory-motor representation, supporting the direct route from perception-to-action that bypasses semantic knowledge. However, in the case of weak affordance cues (pictures), semantic information interfered with action decisions, indicating that semantic knowledge impacts action decisions. The data support the dual-route account from perception-to-action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioinformatics is a recent and emerging discipline which aims at studying biological problems through computational approaches. Most branches of bioinformatics such as Genomics, Proteomics and Molecular Dynamics are particularly computationally intensive, requiring huge amount of computational resources for running algorithms of everincreasing complexity over data of everincreasing size. In the search for computational power, the EGEE Grid platform, world's largest community of interconnected clusters load balanced as a whole, seems particularly promising and is considered the new hope for satisfying the everincreasing computational requirements of bioinformatics, as well as physics and other computational sciences. The EGEE platform, however, is rather new and not yet free of problems. In addition, specific requirements of bioinformatics need to be addressed in order to use this new platform effectively for bioinformatics tasks. In my three years' Ph.D. work I addressed numerous aspects of this Grid platform, with particular attention to those needed by the bioinformatics domain. I hence created three major frameworks, Vnas, GridDBManager and SETest, plus an additional smaller standalone solution, to enhance the support for bioinformatics applications in the Grid environment and to reduce the effort needed to create new applications, additionally addressing numerous existing Grid issues and performing a series of optimizations. The Vnas framework is an advanced system for the submission and monitoring of Grid jobs that provides an abstraction with reliability over the Grid platform. In addition, Vnas greatly simplifies the development of new Grid applications by providing a callback system to simplify the creation of arbitrarily complex multistage computational pipelines and provides an abstracted virtual sandbox which bypasses Grid limitations. Vnas also reduces the usage of Grid bandwidth and storage resources by transparently detecting equality of virtual sandbox files based on content, across different submissions, even when performed by different users. BGBlast, evolution of the earlier project GridBlast, now provides a Grid Database Manager (GridDBManager) component for managing and automatically updating biological flatfile databases in the Grid environment. GridDBManager sports very novel features such as an adaptive replication algorithm that constantly optimizes the number of replicas of the managed databases in the Grid environment, balancing between response times (performances) and storage costs according to a programmed cost formula. GridDBManager also provides a very optimized automated management for older versions of the databases based on reverse delta files, which reduces the storage costs required to keep such older versions available in the Grid environment by two orders of magnitude. The SETest framework provides a way to the user to test and regressiontest Python applications completely scattered with side effects (this is a common case with Grid computational pipelines), which could not easily be tested using the more standard methods of unit testing or test cases. The technique is based on a new concept of datasets containing invocations and results of filtered calls. The framework hence significantly accelerates the development of new applications and computational pipelines for the Grid environment, and the efforts required for maintenance. An analysis of the impact of these solutions will be provided in this thesis. This Ph.D. work originated various publications in journals and conference proceedings as reported in the Appendix. Also, I orally presented my work at numerous international conferences related to Grid and bioinformatics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following development of the fetal bipotential gonad into a testis, male genital differentiation requires testicular androgens. Fetal Leydig cells produce testosterone that is converted to dihydrotestosterone in genital skin, resulting in labio-scrotal fusion. An alternative 'backdoor' pathway of dihydrotestosterone synthesis that bypasses testosterone has been described in marsupials, but its relevance to human biology has been uncertain. The classic and backdoor pathways share many enzymes, but a 3α-reductase, AKR1C2, is unique to the backdoor pathway. Human AKR1C2 mutations cause disordered sexual differentiation, lending weight to the idea that both pathways are required for normal human male genital development. These observations indicate that fetal dihydrotestosterone acts both as a hormone and as a paracrine factor, substantially revising the classic paradigm for fetal male sexual development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Implantation of stents into the bronchial walls is a newly developed method to treat lung emphysema, which is now being tested clinically. During this procedure, a bronchoscope carrying a Doppler ultrasonography head is placed into a segmental bronchus and the blood vessels running in parallel to the bronchus are localized. Once a safe location without blood vessels is found, the bronchial wall is perforated and a stent is placed within the wall to improve the expiratory volume of these "bypasses" to the adjacent lung parenchyma. We observed a fatal complication with this method in a 60-year-old man. The bronchial wall and the pulmonary artery were perforated by one of the stents inducing massive bleeding, which could not be stopped. The patient died due to aspiration of blood in combination with massive loss of blood. The general risk to perforate the pulmonary artery during this procedure cannot be estimated from this single observation but should be considered regarding the legal and clinical aspects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECT: Preliminary experience with the C-Port Flex-A Anastomosis System (Cardica, Inc.) to enable rapid automated anastomosis has been reported in coronary artery bypass surgery. The goal of the current study was to define the feasibility and safety of this method for high-flow extracranial-intracranial (EC-IC) bypass surgery in a clinical series. METHODS: In a prospective study design, patients with symptomatic carotid artery (CA) occlusion were selected for C-Port-assisted high-flow EC-IC bypass surgery if they met the following criteria: 1) transient or moderate permanent symptoms of focal ischemia; 2) CA occlusion; 3) hemodynamic instability; and 4) had provided informed consent. Bypasses were done using a radial artery graft that was proximally anastomosed to the superficial temporal artery trunk, the cervical external, or common CA. All distal cerebral anastomoses were performed on M2 branches using the C-Port Flex-A system. RESULTS: Within 6 months, 10 patients were enrolled in the study. The distal automated anastomosis could be accomplished in all patients; the median temporary occlusion time was 16.6+/-3.4 minutes. Intraoperative digital subtraction angiography (DSA) confirmed good bypass function in 9 patients, and in 1 the anastomosis was classified as fair. There was 1 major perioperative complication that consisted of the creation of a pseudoaneurysm due to a hardware problem. In all but 1 case the bypass was shown to be patent on DSA after 7 days; furthermore, in 1 patient a late occlusion developed due to vasospasm after a sylvian hemorrhage. One-week follow-up DSA revealed transient asymptomatic extracranial spasm of the donor artery and the radial artery graft in 1 case. Two patients developed a limited zone of infarction on CT scanning during the follow-up course. CONCLUSIONS: In patients with symptomatic CA occlusion, C-Port Flex-A-assisted high-flow EC-IC bypass surgery is a technically feasible procedure. The system needs further modification to achieve a faster and safer anastomosis to enable a conclusive comparison with standard and laser-assisted methods for high-flow bypass surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: It is well recognized that colorectal cancer does not frequently metastasize to bone. The aim of this retrospective study was to establish whether colorectal cancer ever bypasses other organs and metastasizes directly to bone and whether the presence of lung lesions is superior to liver as a better predictor of the likelihood and timing of bone metastasis. METHODS: We performed a retrospective analysis on patients with a clinical diagnosis of colon cancer referred for staging using whole-body 18F-FDG PET and CT or PET/CT. We combined PET and CT reports from 252 individuals with information concerning patient history, other imaging modalities, and treatments to analyze disease progression. RESULTS: No patient had isolated osseous metastasis at the time of diagnosis, and none developed isolated bone metastasis without other organ involvement during our survey period. It took significantly longer for colorectal cancer patients to develop metastasis to the lungs (23.3 months) or to bone (21.2 months) than to the liver (9.8 months). Conclusion: Metastasis only to bone without other organ involvement in colorectal cancer patients is extremely rare, perhaps more rare than we previously thought. Our findings suggest that resistant metastasis to the lungs predicts potential disease progression to bone in the colorectal cancer population better than liver metastasis does.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the fate of the yolk glycoproteins found in eggs and embryos of the sea urchin, S. purpuratus, a polyclonal antibody to a 90-kDa polymannose glycoprotein was prepared. lmmunoblot analysis of total proteins over the course of development showed that this antibody recognized a family of glycoproteins. Concomitant with the disappearance of the major 160-kDa egg yolk glycoprotein during embryogenesis, glycoproteins with a lower molecular mass appeared. These glycoproteins (115, 108, 90, 83, and 68 kDa) were purified and peptide mapping revealed that they were cleavage products derived from the major yolk glycoprotein. The antibody identified a homologous set of yolk glycoproteins with similar molecular masses in the embryos of three other species in the class Echinoidea: L. pictus, A. punctulata, and D. excentricus. However, eggs from other echinoderm classes and from chicken, frog, fruit fly, and nematode did not contain any cross-reactive molecules. Cross-reactivity within the class Echinoidea was not due to a common carbohydrate epitope, because the antibody recognized the glycoproteins even after the N-linked, polymannose carbohydrate side chains were enzymatically removed. The major yolk glycoprotein (160-170 kDa) from each of the three sea urchin species was purified and analyzed, revealing striking similarities in pI and in amino acid and monosaccharide composition. Peptide mapping showed that the 160-kDa glycoprotein from the four echinoids are structurally homologous. The major yolk glycoprotein appeared to be proteolyzed by a thiol protease, which could be activated in yolk particles prepared from unfertilized eggs by low pH. Immunolocalization by electron microscopy in S. purpuratus showed that the yolk glycoproteins remained within the yolk platelet throughout embryonic development, and that externalization of the glycoproteins was not detectable. The yolk glycoprotein precursor began to be synthesized in premetamorphosis larvae, and continued in adult males and females. Both the yolk glycoproteins and the yolk platelets disappeared during larval development. This disappearance has special significance because there were no yolk proteins in the direct developing sea urchin, H. erthryogramma, which bypasses larval development and metamorphoses directly into an adult. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major goal of this work was to understand the function of anionic phospholipid in E. coli cell metabolism. One important finding from this work is the requirement of anionic phospholipid for the DnaA protein-dependent initiation of DNA replication. An rnhA mutation, which bypasses the need for the DnaA protein through induction of constitutive stable DNA replication, suppressed the growth arrest phenotype of a $pgsA$ mutant in which the synthesis of anionic phospholipid was blocked. The maintenance of plasmids dependent on an $oriC$ site for replication, and therefore DnaA protein, was also compromised under conditions of limiting anionic phospholipid synthesis. These results provide support for the involvement of anionic phospholipids in normal initiation of DNA replication at oriC in vivo by the DnaA protein. In addition, structural and functional requirements of two major anionic phospholipids, phosphatidylglycerol and cardiolipin, were examined. Introduction into cells of the ability to make phosphatidylinositol did not suppress the need for the naturally occurring phosphatidylglycerol. The requirement for phosphatidylglycerol was concluded to be more than maintenance of the proper membrane surface charge. Examination of the role of cardiolipin revealed its ability to replace the zwitterionic phospholipid, phosphatidylethanolamine, in maintaining an optimal membrane lipid organization. This work also reported the DNA sequence of the cls gene, which encodes the CL synthase responsible for the synthesis of cardiolipin. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al ., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of C-14-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva transforms bovine T-lymphocytes, inducing uncontrolled proliferation. Upon infection, cells cease to require antigenic stimulation and exogenous growth factors to proliferate. Earlier studies have shown that pathways triggered via stimulation of the T-cell receptor are silent in transformed cells. This is reflected by a lack of phosphorylation of key signalling molecules and the fact that proliferation is not inhibited by immunosuppressants such as cyclosporin and ascomycin that target calcineurin. This suggests that the parasite bypasses the normal T-cells activation pathways to induce proliferation. Among the MAP-kinase pathways, ERK and p38 are silent, and only Jun N-terminal kinase is activated. This appears to suffice to induce constitutive activation of the transcription factor AP-1. More recently, it could be shown that the presence of the parasite in the host cell cytoplasm also induces constitutive activation of NF-kappaB, a transcription factor involved in proliferation and protection against apoptosis. Activation is effectuated by parasite-induced degradation of IkappaBs, the cytoplasmic inhibitors which sequester NF-kappaB in the cytoplasm. NF-kappaB activation is resistant to the antioxidant N-acetyl cysteine and a range of other reagents, suggesting that activation might occur in an unorthodox manner. Studies using inhibitors and dominant negative mutants demonstrate that the parasite activates a NF-kappaB-dependent anti-apoptotic mechanism that protects the transformed cell form spontaneous apoptosis and is essential for maintaining the transformed state of the parasitised cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in assembly of the divisome, a molecular machine composed of 14 known proteins which are all required for cell division. Although the biochemical functions of most divisome proteins are unknown, several of these have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane and is active. ^ We identified a single amino acid change in FtsA, R286W, renamed FtsA*, that completely bypasses the requirement for ZipA in cell division. This and other data suggest that FtsA* is a hyperactive form of FtsA that can replace the multiple functions normally assumed by ZipA, which include stabilization of Z rings, recruitment of downstream cell division proteins, and anchoring the Z ring to the membrane. This is the first example of complete functional replacement of an essential prokaryotic cell division protein by another. ^ Cells expressing ftsA* with a complete deletion of ftsK are viable and divide, although many of these ftsK null cells formed multiseptate chains, suggesting a role in cell separation for FtsK. In addition, strains expressing extra ftsAZ, ftsQ, ftsB, zipA or ftsN, were also able to survive and divide in the absence of ftsK. The cytoplasmic and transmembrane domains of FtsQ were sufficient to allow viability and septum formation to ftsK deleted strains. These findings suggest that FtsK is normally involved in stabilizing the divisome and shares functional overlap with other cell division proteins. ^ As well as permitting the removal of other divisome components, the presence of FtsA* in otherwise wild-type cells accelerated Z-ring assembly, which resulted in a significant decrease in the average length of cells. In support of its role in Z-ring stability, FtsA* suppressed the cell division inhibition caused by overexpressing FtsZ. FtsA* did not affect FtsZ turnover within the Z ring as measured by fluorescence recovery after photobleaching. Turnover of FtsA* in the ring was somewhat faster than wild-type FtsA. Yeast two-hybrid data suggest that FtsA* has an increased affinity for FtsZ relative to wild-type FtsA. These results indicate that FtsA* interacts with FtsZ more strongly, and its enhancement of Z ring assembly may explain why FtsA* can permit survival of cells lacking ZipA or FtsK.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone acetylation plays an essential role in many DNA-related processes such as transcriptional regulation via modulation of chromatin structure. Many histone acetytransferases have been discovered and studied in the past few years, but the roles of different histone acetyltransferases (HAT) during mammalian development are not well defined at present. Gcn5 histone acetyltransferase is highly expressed until E16.5 during development. Previous studies in our lab using a constitutive null allele demonstrated that Gcn5 knock out mice are embryonic lethal, precluding the study of Gcn5 functions at later developmental stages. The creation of a conditional Gcn5 null allele, Gcn5flox allele, bypasses the early lethality. Mice homozygous for this allele are viable and appear healthy. In contrast, mice homozygous for a Gcn5 Δex3-18 allele created by Cre-loxP mediated deletion display a phenotype identical to our original Gcn5 null mice. Strikingly, a Gcn5flox(neo) allele, which contain a neomycin cassette in the second intron of Gcn5 is only partially functional and gives rise to a hypomorphic phenotype. Initiation of cranial neural tube closure at forebrain/midbrain boundary fails, resulting in an exencephaly in some Gcn5flox(neo)/flox(neo) embryos. These defects were found at an even greater penetrance in Gcn5flox(neo)/Δ embryos and become completely penetrant in the 129Sv genetic background, suggesting that Gcn5 controls mouse neural tube closure in a dose dependent manner. Furthermore, both Gcn5flox(neo)/flox(neo) and Gcn5 flox(neo)/Δ embryos exhibit anterior homeotic transformations in lower thoracic and lumbar vertebrae. These defects are accompanied by decreased expression levels and a shift in anterior expression boundary of Hoxc8 and Hoxc9. This study provides the first evidence that Gcn5 regulates Hox gene expression and is required for normal axial skeletal patterning in mice. ^