993 resultados para Business forecasting.
Resumo:
This paper applies Gaussian estimation methods to continuous time models for modelling overseas visitors into the UK. The use of continuous time modelling is widely used in economics and finance but not in tourism forecasting. Using monthly data for 1986–2010, various continuous time models are estimated and compared to autoregressive integrated moving average (ARIMA) and autoregressive fractionally integrated moving average (ARFIMA) models. Dynamic forecasts are obtained over different periods. The empirical results show that the ARIMA model performs very well, but that the constant elasticity of variance (CEV) continuous time model has the lowest root mean squared error (RMSE) over a short period.
Resumo:
This paper provides an empirical study to assess the forecasting performance of a wide range of models for predicting volatility and VaR in the Madrid Stock Exchange. The models performance was measured by using different loss functions and criteria. The results show that FIAPARCH processes capture and forecast more accurately the dynamics of IBEX-35 returns volatility. It is also observed that assuming a heavy-tailed distribution does not improve models ability for predicting volatility. However, when the aim is forecasting VaR, we find evidence of that the Student’s t FIAPARCH outperforms the models it nests the lower the target quantile.
Resumo:
For the past 20 years, researchers have applied the Kalman filter to the modeling and forecasting the term structure of interest rates. Despite its impressive performance in in-sample fitting yield curves, little research has focused on the out-of-sample forecast of yield curves using the Kalman filter. The goal of this thesis is to develop a unified dynamic model based on Diebold and Li (2006) and Nelson and Siegel’s (1987) three-factor model, and estimate this dynamic model using the Kalman filter. We compare both in-sample and out-of-sample performance of our dynamic methods with various other models in the literature. We find that our dynamic model dominates existing models in medium- and long-horizon yield curve predictions. However, the dynamic model should be used with caution when forecasting short maturity yields
Resumo:
Building services are worth about 2% GDP and are essential for the effective and efficient operations of the building. It is increasingly recognised that the value of a building is related to the way it supports the client organisation’s ongoing business operations. Building services are central to the functional performance of buildings and provide the necessary conditions for health, well-being, safety and security of the occupants. They frequently comprise several technologically distinct sub-systems and their design and construction requires the involvement of numerous disciplines and trades. Designers and contractors working on the same project are frequently employed by different companies. Materials and equipment is supplied by a diverse range of manufacturers. Facilities managers are responsible for operation of the building service in use. The coordination between these participants is crucially important to achieve optimum performance, but too often is neglected. This leaves room for serious faults. The need for effective integration is important. Modern technology offers increasing opportunities for integrated personal-control systems for lighting, ventilation and security as well as interoperability between systems. Opportunities for a new mode of systems integration are provided by the emergence of PFI/PPP procurements frameworks. This paper attempts to establish how systems integration can be achieved in the process of designing, constructing and operating building services. The essence of the paper therefore is to envisage the emergent organisational responses to the realisation of building services as an interactive systems network.
Resumo:
This paper examines the significance of widely used leading indicators of the UK economy for predicting the cyclical pattern of commercial real estate performance. The analysis uses monthly capital value data for UK industrials, offices and retail from the Investment Property Databank (IPD). Prospective economic indicators are drawn from three sources namely, the series used by the US Conference Board to construct their UK leading indicator and the series deployed by two private organisations, Lombard Street Research and NTC Research, to predict UK economic activity. We first identify turning points in the capital value series adopting techniques employed in the classical business cycle literature. We then estimate probit models using the leading economic indicators as independent variables and forecast the probability of different phases of capital values, that is, periods of declining and rising capital values. The forecast performance of the models is tested and found to be satisfactory. The predictability of lasting directional changes in property performance represents a useful tool for real estate investment decision-making.
Resumo:
The rapid expansion of the TMT sector in the late 1990s and more recent growing regulatory and corporate focus on business continuity and security have raised the profile of data centres. Data centres offer a unique blend of occupational, physical and technological characteristics compared to conventional real estate assets. Limited trading and heterogeneity of data centres also causes higher levels of appraisal uncertainty. In practice, the application of conventional discounted cash flow approaches requires information about a wide range of inputs that is difficult to derive from limited market signals or estimate analytically. This paper outlines an approach that uses pricing signals from similar traded cash flows is proposed. Based upon ‘the law of one price’, the method draws upon the premise that two identical future cash flows must have the same value now. Given the difficulties of estimating exit values, an alternative is that the expected cash flows of data centre are analysed over the life cycle of the building, with corporate bond yields used to provide a proxy for the appropriate discount rates for lease income. Since liabilities are quite diverse, a number of proxies are suggested as discount and capitalisation rates including indexed-linked, fixed interest and zero-coupon bonds. Although there are rarely assets that have identical cash flows and some approximation is necessary, the level of appraiser subjectivity is dramatically reduced.
Resumo:
Many macroeconomic series, such as U.S. real output growth, are sampled quarterly, although potentially useful predictors are often observed at a higher frequency. We look at whether a mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth. The MIDAS specification used in the comparison uses a novel way of including an autoregressive term. We find that the use of monthly data on the current quarter leads to significant improvement in forecasting current and next quarter output growth, and that MIDAS is an effective way to exploit monthly data compared with alternative methods.
Resumo:
This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.
Resumo:
During the past years, the industry has shifted position and moved towards “the luxury universe” whose customers are demanding, treating individuals as unique and valued customer for the business, offering vehicles produced with the state of the art technologies and implementing the highest finishing standards. Due to the competitive level in the market, car makers enable processes which equalizes customer services to E.R. management, being dealt with the maximum urgency that allows the comparison between both, car workshops and emergency rooms, where workshop bays or ramps will be equal to emergency boxes and skilled technicians are equivalent to the health care specialist, who will carry out tests and checks prior to afford any final operation, keeping the “patient” under control before it is back to normal utilization. This paper establishes a valid model for the automotive industry to estimate customer service demand forecasting under variable demand conditions using analogies with patient demand models used for the medical ER.
Resumo:
During the past years, the industry has shifted position and moved towards “the luxury universe” whose customers are demanding, treating individuals as unique and valued customer for the business, offering vehicles produced with the state of the art technologies and implementing the highest finishing standards. Due to the competitive level in the market, motor makers enable processes which equalizes customer services to E.R. management, being dealt with the maximum urgency that allows the comparison between both, car workshops and emergency rooms, where workshop bays or ramps will be equal to emergency boxes and skilled technicians are equivalent to the health care specialist, who will carry out tests and checks prior to afford any final operation, keeping the “patient” under control before it is back to normal utilization. This paper ratify a valid model for the automotive industry to estimate customer service demand forecasting under variable demand conditions using analogies with patient demand models used for the medical ER
Resumo:
Includes bibliography.
Resumo:
In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.
Resumo:
In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.