36 resultados para Bumblebees


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small hive beetles (SHBs) are generalists native to sub-Saharan Africa and reproduce in association with honeybees, bumblebees, stingless bees, fruits and meat. The SHB has recently become an invasive species, and introductions have been recorded from America, Australia, Europe and Asia since 1996. hile SHBs are usually considered a minor pest in Africa, they can cause significant damage to social bee colonies in their new ranges. Potential reasons for differential impact include differences in bee behaviour, climate and release from natural enemies. Here, we provide an overview on biology, distribution, pest status, diagnosis, control and prevention to foster adequate mitigation and stimulate future research. SHBs have become a global threat to both apiculture and wild bee populations, but our knowledge of this pest is still limited, reating demand for more research in all areas of its biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bumblebee species declines have been reported in Europe, North America and Asia. Loss of suitable habitat to agricultural intensification is considered to be the main cause of declines in Europe. Differential impacts on species have been recorded but insufficient knowledge of species ecology means that effective conservation management prescriptions cannot be put into place with certainty. Dietary specialisation, specifically on flowers of Fabaceae, has been hypothesised as driving differential declines but the reliability of previous studies has been questioned. Here we present a three-year study of the foraging behaviour of two UK Biodiversity Action Plan bumblebee species. For the first time, analysis of nectar and pollen foraging was performed on sites where nationally rare UK bumblebees were as abundant as more nationally ubiquitous species. Results indicated that the nationally rare Bombus sylvarum collected the majority of its pollen from flowers of Odontites verna and had a significantly narrower mean nectar dietary breadth than ecologically similar species Bombus humilis and Bombus pascuorum (p = 0.004 and 0.008 respectively). In contrast, the dietary breadth of the nationally rare B. humilis was similar to the more nationally ubiquitous species B. pascuorum and Bombus lapidarius. Moreover, B. lapidarius was recorded as having the narrowest pollen dietary breadth, collected pollen from the least number of floral taxa and was the most specialised of the Bombus species on pollen of Fabaceae. Patterns of dietary specialization were inconsistent with national declines and results highlighted a need for further detailed investigation into the factors contributing to differential declines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ideas about the evolution of imperfect mimicry are reviewed. Their relevance to the colours patterns of hoverflies (Diptera, Syrphidae) are discussed in detail. Most if not all of the hoverflies labelled as mimetic actually are mimics. The apparently poor nature of their resemblance does not prevent them from obtaining at least some protection from suitably experienced birds. Mimicry is a dominant theme of this very large family of Diptera, with at least a quarter of all species in Europe being mimetic. Hoverfly mimics fall into three major groups according to their models, involving bumblebees, honeybees and social wasps. There are striking differences in the general levels of mimetic fidelity and relative abundances of the three groups, with accurate mimicry, low abundance and polymorphism characterizing the bumblebee mimics: more than half of all the species of bumblebee mimics are polymorphic. Mimics of social wasps tend to be poor mimics, have high relative abundance, and polymorphism is completely absent. Bumblebee models fall into a small number of Muellerian mimicry rings which are very different between the Palaearctic and Nearctic regions. Social wasps and associated models form one large Muellerian complex. Together with honeybees, these complexes probably form real clusters of forms as perceived by many birds. All three groups of syrphid mimics contain both good and poor mimics; some mimics are remarkably accurate, and have close morphological and behavioural resemblance. At least some apparently 'poor' mimetic resemblances may be much closer in birds' perception than we imagine, and more work needs to be done on this. Bumblebees are the least noxious and wasps the most noxious of the three main model groups. The basis of noxiousness is different, with bumblebees being classified as non-food, whereas honeybees and wasps are nasty-tasting and (rarely) stinging. The distribution of mimicry is exactly what would be expected from this ordering, with polymorphic and accurate forms being a key feature of mimics of the least noxious models, while highly noxious models have poor-quality mimicry. Even if the high abundance of many syrphid mimics relative to their models is a recent artefact of man-made environmental change, this does not preclude these species from being mimics. It seems unlikely that bird predation actually controls the populations of adult syrphids. Being rare relative to a model may have promoted or accelerated the evolution of perfect mimicry: theoretically this might account for the pattern of rare good mimics and abundant poor ones, but the idea is intrinsically unlikely. Many mimics seem to have hour-to-hour abundances related to those of their models, presumably as a result of behavioural convergence. We need to know much more about the psychology of birds as predators. There are at least four processes that need elucidating: (a) learning about the noxiousness of models; (b) the erasing of that learning through contact with mimics (extinction, or learned forgetting); (c) forgetting; (d) deliberate risk-taking and the physiological states that promote it. Johnston's (2002) model of the stabilization of imperfect mimicry by kin selection is unlikely to account for the colour patterns of hoverflies. Sherratt's (2002) model of the influence of multiple models potentially accounts for all the patterns of hoverfly mimicry, and is the most promising avenue for testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the prediction that, if hoverflies are Batesian mimics, this may extend to behavioral mimicry such that their numerical abundance at each hour of the day (the daily activity pattern) is related to the numbers of their hymenopteran models. After accounting for site, season, microclimatic responses and for general hoverfly abundance at three sites in north-west England, the residual numbers of mimics were significantly correlated positively with their models 9 times out of 17, while 16 out of 17 relationships were positive, itself a highly significant non-random pattern. Several eristaline flies showed significant relationships with honeybees even though some of them mimic wasps or bumblebees, perhaps reflecting an ancestral resemblance to honeybees. There was no evidence that good and poor mimics differed in their daily activity pattern relationships with models. However, the common mimics showed significant activity pattern relationships with their models, but the rarer mimics did not. We conclude that many hoverflies show behavioral mimicry of their hymenopteran models.