943 resultados para Bulbs (Plants)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals. © 2009 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human papillomaviruses are the etiological agents of cervical cancer, one of the two most prevalent cancers in women in developing countries. Currently available prophylactic vaccines are based on the L1 major capsid protein, which forms virus-like particles when expressed in yeast and insect cell lines. Despite their recognized efficacy, there are significant shortcomings: the vaccines are expensive, include only two oncogenic virus types, are delivered via intramuscular injection and require a cold chain. Plant expression systems may provide ways of overcoming some of these problems, in particular the expense. In this article, we report recent promising advances in the production of prophylactic and therapeutic vaccines against human papillomavirus by expression of the relevant antigens in plants, and discuss future prospects for the use of such vaccines. © 2010 Expert Reviews Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MesoLite, a zeolite material manufactured by NanoChem Holdings Pty Ltd is made by caustic reaction of kaolin at temperatures between 80-95°C. This material has a moderate surface area (9~12 m2/g) and very high cation exchange capacity (500meq/100g). To measure the availability of K in K-MesoLite to plants, wheat was grown with K-MesoLite or a soluble fertiliser (e.g. KCl) in non-leached pots in a glasshouse. The weights and elemental compositions of the plants were compared after four weeks growth. Plants grown with K-MesoLite were slightly larger than those grown with KCl. The elemental compositions of the plants were similar except for Si, which was significantly higher in the plants grown with K-MesoLite than in those fertilised with KCl. K from K-MesoLite is readily available to plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymerase chain reaction (PCR) was developed for the detection of Banana bunchy top virus (BBTV) at maximum after 210 min and at minimum after 90 min using Pc-1 and Pc-2, respectively. PCR detection of BBTV in crude sap indicated that the freezing of banana tissue in liquid nitrogen (LN2) before extraction was more effective than using sand as the extraction technique. BBTV was also detected using PCR assay in 69 healthy and diseased plants using Na-PO4 buffer containing 1 % SDS. PCR detection of BBTV in nucleic acid extracts using seven different extraction buffers to adapt the use of PCR in routine detection in the field was studied. Results proved that BBTV was detected with high sensitivity in nucleic acid extracts more than in infectious sap. The results also suggested the common aetiology for the BBTV by the PCR reactions of BBTV in nucleic acid extracts from Australia, Burundi, Egypt, France, Gabon, Philippines and Taiwan. Results also proved a positive relation between the Egyptian-BBTV isolate and abaca bunchy top isolate from the Philippines, but there no relation was found with the Cucumber mosaic cucumovirus (CMV) isolates from Egypt and Philippines and Banana bract mosaic virus (BBMV) were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the b-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify potential migraine therapeutics, extracts of eighteen plants were screened to detect plant constituents affecting ADP induced platelet aggregation and [14C]5-hydroxytryptamine (5-HT) release. Extracts of the seven plants exhibiting significant inhibition of platelet function were reanalysed in the presence of polyvinyl pyrrolidone (PVP) to remove polyphenolic tannins that precipitate proteins. Two of these extracts no longer exhibited inhibition of platelet activity after removal of tannins. However, extracts of Crataegus monogyna, Ipomoea pes-caprae, Eremophila freelingii, Eremophila longifolia, and Asteromyrtus symphyocarpa still potently inhibited ADP induced human platelet [14C]5-HT release in vitro, with levels ranging from 62 to 95% inhibition. I. pes-caprae, and C. monogyna also caused significant inhibition of ADP induced platelet aggregation. All of these plants have been previously used as traditional headache treatments, except for C. monogyna which is used primarily for protective effects on the cardiovascular system. Further studies elucidating the compounds that are responsible for these anti-platelet effects are needed to determine their exact mechanism of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Novel ecosystems that contain new combinations of invasive alien plants (IAPs) present a challenge for managers. Yet, control strategies that focus on the removal of the invasive species and/or restoring historical disturbance regimes often do not provide the best outcome for long-term control of IAPs and the promotion of more desirable plant species. Methods This study seeks to identify the primary drivers of grassland invasion to then inform management practices toward the restoration of native ecosystems. By revisiting both published and unpublished data from experiments and case studies within mainly an Australian context for native grassland management, we show how alternative states models can help to design control strategies to manage undesirable IAPs by manipulating grazing pressure. Results Ungulate grazing is generally considered antithetical to invasive species management because in many countries where livestock production is a relatively new disturbance to grasslands (such as in Australia and New Zealand as well as Canada and the USA), selective grazing pressure may have facilitated opportunities for IAPs to establish. We find that grazing stock can be used to manipulate species composition in favour of the desirable components in pastures, but whether grazing is rested or strategically applied depends on the management goal, sizes of populations of the IAP and more desirable species, and climatic and edaphic conditions. Conclusions Based on our findings, we integrated these relationships to develop a testable framework for managing IAPs with strategic grazing that considers both the current state of the plant community and the desired future state—i.e. the application of the principles behind reclamation, rehabilitation, restoration or all three—over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 59 rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs. Published by Cold Spring Harbor Laboratory Press. Copyright © 2008 RNA Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tobacco plants were transformed with a chimeric transgene comprising sequences encoding β-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense ∼22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA interference (RNAi) is widely used to silence genes in plants and animals. It operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA silencing has become a major focus of molecular biology and biomedical research around the world. This is highlighted by a simple PubMed search for “RNA silencing,” which retrieves almost 9,000 articles. Interest in gene silencing-related mechanisms stemmed from the early 1990s, when this phenomenon was first noted as a surprise observation by plant scientists during the course of plant transformation experiments, in which the introduction of a transgene into the genome led to the silencing of both the transgene and homologous endogenes. From these initial studies, plant biologists have continued to generate a wealth of information into not only gene silencing mechanisms but also the complexity of these biological pathways as well as revealing their multilevel interactions with one another. The plant biology community has also made significant advancements in exploiting RNA silencing as a powerful tool for gene function studies and crop improvements. In this article, we (1) review the rich history of gene silencing research and the knowledge it has generated into our understanding of this fundamental mechanism of gene regulation in plants; (2) describe examples of the current applications of RNA silencing in crop plants; and (3) discuss improvements in RNA silencing technology and its potential application in plant science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-transcriptional control of gene expression has gone from a curiosity involving a few special genes to a highly diverse and widespread set of processes that is truly pervasive in plant gene expression. Thus, Plant Cell readers interested in almost any aspect of plant gene expression in response to any environmental influence, or in development, are advised to read on. In May 2001, what has become the de facto third biennial Symposium on Post-Transcriptional Control of Gene Expression in Plants was held in Ames, Iowa. The meeting was hosted by the new Plant Sciences Institute of Iowa State University with additional funding from the National Science Foundation and the United States Department of Agriculture. In 1997, the annual University of California-Riverside Plant Physiology Symposium was devoted to this topic. This provided a wake-up call to the plant world, summarized in this journal (Gallie and Bailey-Serres, 1997), that not all gene expression is controlled at the level of transcription. This was expanded upon at a European Molecular Biology Organization Workshop in Leysin, Switzerland, in 1999 (Bailey-Serres et al., 1999). The 3-day meeting in Ames brought together a strong and diverse contingent of plant biologists from four continents. The participants represented an unusually heterogeneous group of disciplines ranging from virology to stress response to computational biology. The research approaches and techniques represented were similarly diverse. Here we discuss a sample of the many fascinating aspects of post-transcriptional control that were presented at this meeting; we apologize to those whose work is not described here.