931 resultados para Broadband microstrip antenna
Resumo:
A novel dual frequency design of a square microstrip antenna coaxially fed along the diagonal with a chip capacitor mounted at the bottom of the stub is introduced. This design provides enhanced area reduction and good cross-polarization levels. The antenna design can be used as a compact antenna system where limited size is a major requirement. The details of the antenna design and experimental results are presented
Resumo:
Development of a new compact circular-sided microstrip antenna is presented. This antenna offers considerable area re- TABLE 2. Variation of Resonant Frequencies duction compared to standard rectangular microstrip antenna designed for the same frequency. Typical antenna design and experimental results for circular polarization are also demonstrated. 77je antenna has a 3-dB axial ratio bandwidth of 1.5%
Resumo:
Experimental and simulated results for a dual-port dual-polarized microstrip antenna are presented. The antenna excites two orthogonally polarized resonant frequencies providing an isolation of -30 dB between the ports. The patch geometry consists of two circular arcs of different radii with their centers displaced by a distance. This new design offers an area reduction of -70% coinpared to it standard rectangular microstrip antenna with a reduction in gain of 1.7 dB
Resumo:
The mathematical formulation of empirically developed formulas Jirr the calculation of the resonant frequency of a thick-substrate (h s 0.08151 A,,) microstrip antenna has been analyzed. With the use qt' tunnel-based artificial neural networks (ANNs), the resonant frequency of antennas with h satisfying the thick-substrate condition are calculated and compared with the existing experimental results and also with the simulation results obtained with the use of an IE3D software package. The artificial neural network results are in very good agreement with the experimental results
Resumo:
A dual-port dual-polarized compact microstrip antenna for avoiding cross coupling between the two frequency bands is proposed and analyzed. This antenna offers channel isolation better than 25 dB, and is more compact compared to a conventional rectangular patch. Analytical equations for calculating the resonant frequencies at both ports are also presented. The theoretical calculations are verified using experimental results
Resumo:
A new design of' a dual-frequency dual-polarized square microsh'ip antenna fed along the diagonal, embedded with a square slot having three extended stubs for frequency tuning, is introduced. The proposed antenna was fabricated using a standard photolithographic method and the antenna was tested using the HP 3510(:; Vector Network Analyser. The antenna is capable of generating dual resonant frequencies with mutually perpendicular polarizations and broad radiation pattern characteristics. Such dual-frequency designs find wide applications in personal mobile handsets combining GSM and CDS 1800 modes, and applications in which different frequencies are used for emission and reception such as personal satellite communications and cellular network systems.
Resumo:
An electromagnetically coupled T-shaped microstrip feed used to enhance the impedance bandwidth of a rectangular microstrip antenna is reported. The proposed antenna offers a 2:1 VSWR bandwidth of -36% with an increase in gain of 0.8 dB
Resumo:
compact microstrip antenna integrated with an amplifier having an area reduction of 70%, compared to the standard circular microstrip patch antenna, is presented. The antenna also provides an enhanced gain of 10-dB more than its passive counter part. The measured 2:1 VSWR band width is -4% at 790 MHz, which is 2.5 times larger than that of the passive microstrip antenna
Resumo:
A theoretical analysis of a symmetric T-shaped rnicrostripfed rectangular microstrip antenna using the finite-difference titnedoniain (FDTD) method is presented in this paper. The resonant frequency, return loss, impedance bandwidth, and radiation patterns are predicted and are in good agreement with the measured results
Resumo:
In this paper, we introduce a novel feeding technique for bandwidth enhancement of a rectangular microstrip antenna This antenna offers an impedance bandwidth of 22% without degrading the effciencv. The effect of the feed parameters upon patch characteristics such as resonant frequency, impedance bandwidth, and radiation pattern are studied in detail. The experimental results are verified using the FDTD results
Resumo:
A novel reconfigurable, single feed, dual frequency, dualpolarized operation of a hexagonal slot-loaded square mwrostrip antenna is presented in this paper. A pin diode incorporated in the slot is used to switch the two operating frequencies considerably, without significantly affecting the radiation characteristics and gain. The proposed antenna provides a size reduction up to 61% and 26% Jor the two resonating frequencies, compared to standard rectangular patches. This design also gives considerable bandwidth up to 3.3% and 4.27%, for the two frequencies with a low operating frequency ratio
Resumo:
A new design for a compact electronically reconffgurable singlefeed dual frequency dual-polarized operation of a square-microstrip antenna capable of achieving tunable frequency ratios in the range 1.1 to 1.37 is proposed and experimentally studied. Varactor diodes inlegruted with the arms of the hexagonal slot and embedded in the square patch are used to tune the operating frequencies by applying reverse-bias voltage. The design has the advantage of size reduction up to 73.21% and 49.86% for the two resonant frequencies, respectively, as compared to standard rectangular patches. The antenna offers good bandwidth of 5.74% and 5.36% for the two operating frequencies. A highly simplified tuning circuitry without any transmission lines adds to the compactness of the design
Resumo:
A novel design of a computer electronically reconfigurable dual frequency dual polarized single feed hexagonal slot loaded microstrip antenna in L-band is introduced in this chapter. pin diodes are used to switch the operating frequencies considerably without much affecting the radiation characteristics and gain. the antenna can work with a frequency ratio varying in the wide range from 1.2 to 1.4. the proposed design has an added advantage of size reduction up to 72.21% and 46.84% for the two resonating frequencies compared to standard rectangular patches. the design also gives considerable bandwidth of up to 2.82% and 2.42 % for the operating frequencies.
Resumo:
Department of Elecctronics, Cochin University of Science and Technology