90 resultados para Branes
Resumo:
In the paper of Bonora et al. (2008) [3] we have shown, in the context of type II superstring theory, the classification of the allowed B-field and A-field configurations in the presence of anomaly-free D-branes, the mathematical framework being provided by the geometry of gerbes. Here we complete the discussion considering in detail the case of a stack of D-branes, carrying a non-abelian gauge theory, which was just sketched in Bonora et al. (2008) [3]. In this case we have to mix the geometry of abelian gerbes, describing the B-field, with the one of higher-rank bundles, ordinary or twisted. We describe in detail the various cases that arise according to such a classification, as we did for a single D-brane, showing under which hypotheses the A-field turns out to be a connection on a canonical gauge bundle. We also generalize to the non-abelian setting the discussion about "gauge bundles with non-integral Chern classes", relating them to twisted bundles with connection. Finally, we analyze the geometrical nature of the Wilson loop for each kind of gauge theory on a D-brane or stack of D-branes.
Resumo:
A few supergravity solutions representing configurations of NS5-branes admit exact conformal field theory (CFT) description. Deformations of these solutions should be described by exactly marginal operators of the corresponding theories. We briefly review the essentials of these constructions and present, as a new case, the operators responsible for turning on angular momentum.
Resumo:
We present the first-order corrected dynamics of fluid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order in the absence of external forces. Assuming linear response theory, we characterize the corresponding effective theory of stationary bent charged (an)isotropic fluid branes in terms of two sets of response coefficients, the Young modulus and the piezoelectric moduli. We subsequently find large classes of examples in gravity of this effective theory, by constructing stationary strained charged black brane solutions to first order in a derivative expansion. Using solution generating techniques and bent neutral black branes as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton gravity. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D-branes of type II string theory. By subsequently measuring the bending moment and the electric dipole moment which these geometries acquire due to the strain, we uncover that their form is captured by classical electroelasticity theory. In particular, we find that the Young modulus and the piezoelectric moduli of our strained charged black brane solutions are parameterized by a total of 4 response coefficients, both for the isotropic as well as anisotropic cases.
Resumo:
We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. Finally, we apply our formalism to two blackfold examples, the black tori and charged black rings and compare the latter to a numerically generated solution.
Resumo:
We argue that the effective theory describing the long-wavelength dynamics of black branes is the same effective theory that describes the dynamics of biophysical membranes. We improve the phase structure of higher-dimensional black rings by considering finite thickness corrections in this effective theory, showing a striking agreement between our analytical results and recent numerical constructions while simultaneously drawing a parallel between gravity and the effective theory of biophysical membranes.
Resumo:
In many instances of holographic correspondences between a d-dimensional boundary theory and a (. d+. 1)-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (. d-. 1)-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincaré-Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.
Resumo:
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Resumo:
In this work we consider the evolution of a massive scalar field in cylindrically symmetric space-times. Quasinormal modes have been calculated for static and rotating cosmic cylinders. We found unstable modes in some cases. Rotating as well as static cosmic strings, i.e., without regular interior solutions, do not display quasinormal oscillation modes. We conclude that rotating cosmic cylinder space-times that present closed timelike curves are unstable against scalar perturbations.
Resumo:
We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.
Resumo:
We compute the properties of a class of charged black holes in antide Sitter space-time, in diverse dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravities, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermodynamic phase structures for these systems, which display classic critical phenomena, including structures isomorphic to the van der WaalsMaxwell liquid-gas system. In that case, the phases are controlled by the universal cusp and swallowtail shapes familiar from catastrophe theory. All of the thermodynamics is consistent with field theory interpretations via holography, where the dual field theories can sometimes be found on the world volumes of coincident rotating branes.
Resumo:
"static" instanton, representing pair creation of critical bubbles¿a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the ¿saltatory¿ relaxation scenario proposed by Feng et al.