980 resultados para Brain glutamate dehydrogenase
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Foi estudado o efeito da deficiência de potássio sobre as atividades da glutamato desidrogenase (EC. 1.4.1.2) e glutamato sintase (EC. 2.6.1.53) em folhas de feijoeiro (Phaseolus vulgaris L.). Os resultados mostraram que a atividade específica da glutamato desidrogenase aumentou nas plantas deficientes em potássio nos dois cultivares estudados. Foi detectada redução na atividade de glutamato sintase nas plantas deficientes em potássio.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective - To compare hemodynamic, clinicopathologic, and gastrointestinal motility effects and recovery characteristics of halothane and isoflurane in horses undergoing arthroscopic surgery. Animals - 8 healthy adult horses. Procedure - Anesthesia was maintained with isoflurane or halothane (crossover study). At 6 intervals during anesthesia and surgery, cardiopulmonary variables and related derived values were recorded. Recovery from anesthesia was assessed; gastrointestinal tract motility was subjectively monitored for 72 hours after anesthesia. Horses were administered chromium, and fecal chromium concentration was used to assess intestinal transit time. Venous blood samples were collected for clinicopathologic analyses before and 2, 24, and 48 hours after anesthesia. Results - Compared with halothane-anesthetized horses, cardiac index, oxygen delivery, and heart rate were higher and systemic vascular resistance was lower in isoflurane-anesthetized horses. Mean arterial blood pressure and the dobutamine dose required to maintain blood pressure were similar for both treatments. Duration and quality of recovery from anesthesia did not differ between treatments, although the recovery periods were somewhat shorter with isoflurane. After isoflurane anesthesia, gastrointestinal motility normalized earlier and intestinal transit time of chromium was shorter than that detected after halothane anesthesia. Compared with isoflurane, halothane was associated with increases in serum aspartate transaminase and glutamate dehydrogenase activities, but there were no other important differences in clinicopathologic variables between treatments. Conclusions and clinical relevance - Compared with halothane, isoflurane appears to be associated with better hemodynamic stability during anesthesia, less hepatic and muscle damage, and more rapid return of normal intestinal motility after anesthesia in horses undergoing arthroscopic procedures.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.
Resumo:
[EN] Ammonium (NH4+) release by bacterial remineralization and heterotrophic grazers determines the regenerated fraction of phytoplankton productivity, so the measurement of NH4+ excretion in marine organisms is necessary to characterize both the magnitude and the efficiency of the nitrogen cycle. Glutamate dehydrogenase (GDH) is largely responsible for NH4+ formation in crustaceans and consequently should be useful in estimating NH4+ excretion by marine zooplankton.
Here, we address body size and starvation as sources of variability on the GDH to NH4+ excretion ratio (GDH/RNH4+). We found a strong correlation between the RNH4+ and the GDH activity (r2 = 0.87, n = 41) during growth. Since GDH activity maintained a linear relation (b = 0.93) and RNH4+ scaled exponentially (b =0.55) in well fed mysids, the GDH/RNH4+ ratio increased with size. However, the magnitude of its variation increased even more when adult mysids were starved. In this case, the GDH/RNH4+ ratio ranged from 11.23 to 102.41.
Resumo:
Máster Universitario en Oceanografía
Resumo:
[EN] Ammonium (NH4+) and nitrate (NO3-) are the main constituents of the inorganic nitrogen pool that supports primary production in marine systems. NH4+ release via glutamate deamination in heterotrophic organisms represents the largest recycled nitrogen source in the euphotic zone, supporting around the 80 % of the primary producers requirements (Harrison, 1992). Glutamate dehydrogenase (GDH) is the enzyme that catalyzes this process. This fact has lead to the use of GDH activity as an index, a proxy, for physiological NH4+ formation. The result is a measure of potential excretion that avoids incubation artefacts due to manipulation of the organisms. The relationship between GDH activity and NH4+ excretion in cultures of the marine mysid Leptomysis lingvura is analyzed here. With interspecific and environmental interferences minimized, the study shows that the relationship between GDH activity and NH4+ excretion in L. lingvura is similar to equivalent results measured on mixed assemblages of zooplankton.
Resumo:
[EN] Ammonium (NH4+) release by bacterial remineralization and heterotrophic grazers determines the regenerated fraction of phytoplankton productivity, so the measurement of NH4+ excretion in marine organisms is necessary to characterize both the magnitude and the efficiency of the nitrogen cycle. Glutamate dehydrogenase (GDH) is largely responsible for NH4+ formation in crustaceans and consequently should be useful in estimating NH4+ excretion by marine zooplankton.
Here, we address body size and starvation as sources of variability on the GDH to NH4+ excretion ratio (GDH/RNH4+). We found a strong correlation between the RNH4+ and the GDH activity (r2 = 0.87, n = 41) during growth. Since GDH activity maintained a linear relation (b = 0.93) and RNH4+ scaled exponentially (b =0.55) in well fed mysids, the GDH/RNH4+ ratio increased with size. However, the magnitude of its variation increased even more when adult mysids were starved. In this case, the GDH/RNH4+ ratio ranged from 11.23 to 102.41.