904 resultados para Box-Jenkins forecasting


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo desta dissertação foi estimar a demanda de tratores agrícolas para o mercado brasileiro no triênio 2016-2018, utilizando-se para isto de técnicas de econometria de séries temporais, neste caso, modelos univariados da classe ARIMA e SARIMA e ou multivariados SARIMAX. Justifica-se esta pesquisa quando se observa a indústria de máquinas agrícolas no Brasil, dados os ciclos econômicos e outros fatores exógenos aos fundamentos econômicos da demanda, onde esta enfrenta muitos desafios. Dentre estes, a estimação de demanda se destaca, pois exerce forte impacto, por exemplo, no planejamento e custo de produção de curto e médio prazo, níveis de inventários, na relação com fornecedores de materiais e de mão de obra local, e por consequência na geração de valor para o acionista. Durante a fase de revisão bibliográfica foram encontrados vários trabalhos científicos que abordam o agronegócio e suas diversas áreas de atuação, porém, não foram encontrados trabalhos científicos publicados no Brasil que abordassem a previsão da demanda de tratores agrícolas no Brasil, o que serviu de motivação para agregar conhecimento à academia e valor ao mercado através deste. Concluiu-se, após testes realizados com diversos modelos que estão dispostos no texto e apêndices, que o modelo univariado SARIMA (15,1,1) (1,1,1) cumpriu as premissas estabelecidas nos objetivos específicos para escolha do modelo que melhor se ajusta aos dados, e foi escolhido então, como o modelo para estimação da demanda de tratores agrícolas no Brasil. Os resultados desta pesquisa apontam para uma demanda de tratores agrícolas no Brasil oscilando entre 46.000 e 49.000 unidades ano entre os anos de 2016 e 2018.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se presenta en este artículo la simulación de las características de envases de vidrio, mediante modelos auto regresivos (AR), siguiendo el enfoque Box-Jenkins. El artículo se presenta en dos partes: en la primera, se demuestra la adecuación de un modelo AR (2), para la simulación de los espesores a partir de las características estadísticas determinadas sobre cortes longitudinales de envases reales. En la segunda parte, se presenta la forma práctica que se ha desarrollado para la simulación de una muestra de veinte recipientes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A massive amount has been written about forecasting but few articles are written about the development of time series models of call volumes for emergency services. In this study, we use different techniques for forecasting and make the comparison of the techniques for the call volume of the emergency service Rescue 1122 Lahore, Pakistan. For the purpose of this study data is taken from emergency calls of Rescue 1122 from 1st January 2008 to 31 December 2009 and 731 observations are used. Our goal is to develop a simple model that could be used for forecasting the daily call volume. Two different approaches are used for forecasting the daily call volume Box and Jenkins (ARIMA) methodology and Smoothing methodology. We generate the models for forecasting of call volume and present a comparison of the two different techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Box-Cox transformation is a technique mostly utilized to turn the probabilistic distribution of a time series data into approximately normal. And this helps statistical and neural models to perform more accurate forecastings. However, it introduces a bias when the reversion of the transformation is conducted with the predicted data. The statistical methods to perform a bias-free reversion require, necessarily, the assumption of Gaussianity of the transformed data distribution, which is a rare event in real-world time series. So, the aim of this study was to provide an effective method of removing the bias when the reversion of the Box-Cox transformation is executed. Thus, the developed method is based on a focused time lagged feedforward neural network, which does not require any assumption about the transformed data distribution. Therefore, to evaluate the performance of the proposed method, numerical simulations were conducted and the Mean Absolute Percentage Error, the Theil Inequality Index and the Signal-to-Noise ratio of 20-step-ahead forecasts of 40 time series were compared, and the results obtained indicate that the proposed reversion method is valid and justifies new studies. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, foi realizado um estudo de mapeamento de áreas de incidência e previsões para os casos de dengue na área urbana de Belém. Para as previsões foi utilizada à incidência de dengue com a precipitação pluviométrica a partir de modelos estatísticos, baseados na metodologia de Box e Jenkins de series temporais. O período do estudo foi de 05 anos (2007-2011). Na pesquisa temos métodos multivariados de series temporais, com uso de função de transferência e modelos espaciais, em que se analisou a existência de autocorrelações espaciais na variável em estudo. Os resultados das análises dos dados de incidência de casos de dengue e precipitação mostraram que, o aumento no número de casos de dengue acompanha o aumento na precipitação, demonstrando a relação direta entre o número de casos de dengue e a precipitação nos anos em estudo. O modelo de previsão construído para a incidência de casos de dengue apresentou um bom ajuste com resultados satisfatórios podendo, neste caso, ser utilizado na previsão da dengue. Em relação à análise espacial, foi possível uma visualização da incidência de casos na área urbana de Belém, com as respectivas áreas de incidência, mostrando os níveis de significância em porcentagem. Para o período estudado observou-se o comportamento e as variações dos casos de dengue, com destaque para quatro bairros: Marco, Guamá, Pedreira e Tapanã, com possíveis influências destes bairros nas áreas (bairros) vizinhas. Portanto, o presente estudo evidencia a contribuição para o planejamento das ações de controle da dengue, ao servir de instrumento no apoio às decisões na área de saúde pública.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.