987 resultados para Bouncing Ball Model
Resumo:
Current research into the process of engineering design is extending the use of computers towards the acquisition, representation and application of design process knowledge in addition to the existing storage and manipulation of product-based models of design objects. This is a difficult task because the design of mechanical systems is a complex, often unpredictable process involving ill-structured problem solving skills and large amounts of knowledge, some which may be of an incomplete and subjective nature. Design problems require the integration of a variety of modes of working such as numerical, graphical, algorithmic or heuristic and demand products through synthesis, analysis and evaluation activities.
This report presents the results of a feasibility study into the blackboard approach and discusses the development of an initial prototype system that will enable an alphanumeric design dialogue between a designer and an expert to be analysed in a formal way, thus providing real-life protocol data on which to base the blackboard message structures.
Resumo:
Despite use of the best in current design practices, high-speed shaft (HSS) bearings, in a wind-turbine gearbox, continue to exhibit a high rate of premature failure. As HSS bearings operate under low loads and high speeds, these bearings are prone to skidding. However, most of the existing methods for analyzing skidding are quasi-static in nature and cannot be used to study dynamic operating conditions. This paper proposes a dynamic model, which includes gyroscopic and centrifugal effects, to study the skidding characteristics of angular-contact ball-bearings. Traction forces between rolling-elements and raceways are obtained using elastohydrodynamic (EHD) lubrication theory. Underlying gross-sliding mechanisms for pure axial loads, and combined radial and axial loads are also studied. The proposed model will enable engineers to improve bearing reliability at the design stage, by estimating the amount of skidding. © 2011 Published under licence by IOP Publishing Ltd.
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image, followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface lightness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987, J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accordance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball are also presented.
Inclusive education policy, the general allocation model and dilemmas of practice in primary schools
Resumo:
Background: Inclusive education is central to contemporary discourse internationally reflecting societies’ wider commitment to social inclusion. Education has witnessed transforming approaches that have created differing distributions of power, resource allocation and accountability. Multiple actors are being forced to consider changes to how key services and supports are organised. This research constitutes a case study situated within this broader social service dilemma of how to distribute finite resources equitably to meet individual need, while advancing inclusion. It focuses on the national directive with regard to inclusive educational practice for primary schools, Department of Education and Science Special Education Circular 02/05, which introduced the General Allocation Model (GAM) within the legislative context of the Education of Persons with Special Educational Needs (EPSEN) Act (Government of Ireland, 2004). This research could help to inform policy with ‘facts about what is happening on the ground’ (Quinn, 2013). Research Aims: The research set out to unearth the assumptions and definitions embedded within the policy document, to analyse how those who are at the coalface of policy, and who interface with multiple interests in primary schools, understand the GAM and respond to it, and to investigate its effects on students and their education. It examines student outcomes in the primary schools where the GAM was investigated. Methods and Sample The post-structural study acknowledges the importance of policy analysis which explicitly links the ‘bigger worlds’ of global and national policy contexts to the ‘smaller worlds’ of policies and practices within schools and classrooms. This study insists upon taking the detail seriously (Ozga, 1990). A mixed methods approach to data collection and analysis is applied. In order to secure the perspectives of key stakeholders, semi-structured interviews were conducted with primary school principals, class teachers and learning support/resource teachers (n=14) in three distinct mainstream, non-DEIS schools. Data from the schools and their environs provided a profile of students. The researcher then used the Pobal Maps Facility (available at www.pobal.ie) to identify the Small Area (SA) in which each student resides, and to assign values to each address based on the Pobal HP Deprivation Index (Haase and Pratschke, 2012). Analysis of the datasets, guided by the conceptual framework of the policy cycle (Ball, 1994), revealed a number of significant themes. Results: Data illustrate that the main model to support student need is withdrawal from the classroom under policy that espouses inclusion. Quantitative data, in particular, highlighted an association between segregated practice and lower socioeconomic status (LSES) backgrounds of students. Up to 83% of the students in special education programmes are from lower socio-economic status (LSES) backgrounds. In some schools 94% of students from LSES backgrounds are withdrawn from classrooms daily for special education. While the internal processes of schooling are not solely to blame for class inequalities, this study reveals the power of professionals to order children in school, which has implications for segregated special education practice. Such agency on the part of key actors in the context of practice relates to ‘local constructions of dis/ability’, which is influenced by teacher habitus (Bourdieu, 1984). The researcher contends that inclusive education has not resulted in positive outcomes for students from LSES backgrounds because it is built on faulty assumptions that focus on a psycho-medical perspective of dis/ability, that is, placement decisions do not consider the intersectionality of dis/ability with class or culture. This study argues that the student need for support is better understood as ‘home/school discontinuity’ not ‘disability’. Moreover, the study unearths the power of some parents to use social and cultural capital to ensure eligibility to enhanced resources. Therefore, a hierarchical system has developed in mainstream schools as a result of funding models to support need in inclusive settings. Furthermore, all schools in the study are ‘ordinary’ schools yet participants acknowledged that some schools are more ‘advantaged’, which may suggest that ‘ordinary’ schools serve to ‘bury class’ (Reay, 2010) as a key marker in allocating resources. The research suggests that general allocation models of funding to meet the needs of students demands a systematic approach grounded in reallocating funds from where they have less benefit to where they have more. The calculation of the composite Haase Value in respect of the student cohort in receipt of special education support adopted for this study could be usefully applied at a national level to ensure that the greatest level of support is targeted at greatest need. Conclusion: In summary, the study reveals that existing structures constrain and enable agents, whose interactions produce intended and unintended consequences. The study suggests that policy should be viewed as a continuous and evolving cycle (Ball, 1994) where actors in each of the social contexts have a shared responsibility in the evolution of education that is equitable, excellent and inclusive.
Resumo:
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.
Resumo:
Estimating a time interval and temporally coordinating movements in space are fundamental skills, but the relationships between these different forms of timing, and the neural processes that they incur, are not well understood. While different theories have been proposed to account for time perception, time estimation, and the temporal patterns of coordination, there are no general mechanisms which unify these various timing skills. This study considers whether a model of perceptuo-motor timing, the tau(GUIDE), can also describe how certain judgements of elapsed time are made. To evaluate this, an equation for determining interval estimates was derived from the tau(GUIDE) model and tested in a task where participants had to throw a ball and estimate when it would hit the floor. The results showed that in accordance with the model, very accurate judgements could be made without vision (mean timing error -19.24 msec), and the model was a good predictor of skilled participants' estimate timing. It was concluded that since the tau(GUIDE) principle provides temporal information in a generic form, it could be a unitary process that links different forms of timing.
Resumo:
We examine hypotheses for the neural basis of the profile of visual cognition in young children with Williams syndrome (WS). These are: (a) that it is a consequence of anomalies in sensory visual processing; (b) that it is a deficit of the dorsal relative to the ventral cortical stream; (c) that it reflects deficit of frontal function, in particular of fronto-parietal interaction; (d) that it is related to impaired function in the right hemisphere relative to the left. The tests reported here are particularly relevant to (b) and (c). They form part of a more extensive programme of investigating visual, visuospatial, and cognitive function in large group of children with WS children, aged 8 months to 15 years. To compare performance across tests, avoiding floor and ceiling effects, we have measured performance in children with WS in terms of the ‘age equivalence’ for typically developing children. In this paper the relation between dorsal and ventral function was tested by motion and form coherence thresholds respectively. We confirm the presence of a subgroup of children with WS who perform particularly poorly on the motion (dorsal) task. However, such performance is also characteristic of normally developingchildren up to 5 years: thus the WS performance may reflect an overall persisting immaturity of visuospatial processing which is particularly evident in the dorsal stream. Looking at the performance on the global coherence tasks of the entire WS group, we find that there is also a subgroup who have both high form and motion coherence thresholds, relative to the performance of children of the same chronological age and verbal age on the BPVS, suggesting a more general global processing deficit. Frontal function was tested by a counterpointing task, ability to retrieve a ball from a ‘detour box’, and the Stroop-like ‘day-night’ task, all of which require inhibition of a familiar response. When considered in relation to overall development as indexed by vocabulary, the day-night task shows little specific impairment, the detour box shows a significant delay relative to controls, and the counterpointing task shows a marked and persistent deficit in many children. We conclude that frontal control processes show most impairment in WS when they are associated with spatially directed responses, reflecting a deficit of fronto-parietal processing. However, children with WS may successfully reduce the effect of this impairment by verbally mediated strategies. On all these tasks we find a range of difficulties across individual children and a small subset of WS who show very good performance, equivalent to chronological age norms of typically developing children. Neurobiological models of visuo-spatial cognition in children with WS p.4 Overall, we conclude that children with WS have specific processing difficulties with tasks involving frontoparietal circuits within the spatial domain. However, some children with WS can achieve similar performance to typically developing children on some tasks involving the dorsal stream, although the strategies and processing may be different in the two groups.
Resumo:
The cerebral cortex contains circuitry for continuously computing properties of the environment and one's body, as well as relations among those properties. The success of complex perceptuomotor performances requires integrated, simultaneous use of such relational information. Ball catching is a good example as it involves reaching and grasping of visually pursued objects that move relative to the catcher. Although integrated neural control of catching has received sparse attention in the neuroscience literature, behavioral observations have led to the identification of control principles that may be embodied in the involved neural circuits. Here, we report a catching experiment that refines those principles via a novel manipulation. Visual field motion was used to perturb velocity information about balls traveling on various trajectories relative to a seated catcher, with various initial hand positions. The experiment produced evidence for a continuous, prospective catching strategy, in which hand movements are planned based on gaze-centered ball velocity and ball position information. Such a strategy was implemented in a new neural model, which suggests how position, velocity, and temporal information streams combine to shape catching movements. The model accurately reproduces the main and interaction effects found in the behavioral experiment and provides an interpretation of recently observed target motion-related activity in the motor cortex during interceptive reaching by monkeys. It functionally interprets a broad range of neurobiological and behavioral data, and thus contributes to a unified theory of the neural control of reaching to stationary and moving targets.
Resumo:
Previous research has shown that Parkinson's disease (PD) patients can increase the speed of their movement when catching a moving ball compared to when reaching for a static ball (Majsak et al., 1998). A recent model proposed by Redgrave et al. (2010) explains this phenomenon with regard to the dichotomic organization of motor loops in the basal ganglia circuitry and the role of sensory micro-circuitries in the control of goal-directed actions. According to this model, external visual information that is relevant to the required movement can induce a switch from a habitual control of movement toward an externally-paced, goal-directed form of guidance, resulting in augmented motor performance (Bienkiewicz et al., 2013). In the current study, we investigated whether continuous acoustic information generated by an object in motion can enhance motor performance in an arm reaching task in a similar way to that observed in the studies of Majsak et al. (1998, 2008). In addition, we explored whether the kinematic aspects of the movement are regulated in accordance with time to arrival information generated by the ball's motion as it reaches the catching zone. A group of 7 idiopathic PD (6 male, 1 female) patients performed a ball-catching task where the acceleration (and hence ball velocity) was manipulated by adjusting the angle of the ramp. The type of sensory information (visual and/or auditory) specifying the ball's arrival at the catching zone was also manipulated. Our results showed that patients with PD demonstrate improved motor performance when reaching for a ball in motion, compared to when stationary. We observed how PD patients can adjust their movement kinematics in accordance with the speed of a moving target, even if vision of the target is occluded and patients have to rely solely on auditory information. We demonstrate that the availability of dynamic temporal information is crucial for eliciting motor improvements in PD. Furthermore, these effects appear independent from the sensory modality through-which the information is conveyed.
Resumo:
Thrust ball bearings lubricated with several different greases were tested on a modified Four-Ball Machine, where the Four-Ball arrangement was replaced by a bearing assembly. The friction torque and operating temperatures in a thrust ball bearing were measured during the tests. At the end of each test a grease sample was analyzed through ferrographic techniques in order to quantify and evaluate bearing wear. A rolling bearing friction torque model was used and the coefficient of friction in full film lubrication was determined for each grease, depending on the operating conditions. The experimental results obtained showed that grease formulation had a very significant influence on friction torque and operating temperature. The friction torque depends on the viscosity of the grease base oil, on its nature (mineral, ester, PAO, etc.), on the coefficient of friction in full film conditions, but also on the interaction between grease thickener and base oil, which affected contact replenishment and contact starvation, and thus influenced the friction torque.
Resumo:
The discussion of possible scenarios for the future of Quality is on the priority list of major Quality Practitioners Societies. EOQ – European Organization for Quality (EOQ, 2014) main team for its 58th EOQ-Congress held June 2014 in Göteborg was “Managing Challenges in Quality Leadership” and ASQ - American Society for Quality (ASQ, 2015) appointed “the Future of Quality” for Quality Progress Magazine November 2015 issue. In addition, the ISO 9001:2008 revision process carried by ISO/TC 176 aims to assure that ISO 9001:2015 International Standard remains stable for the next 10 years (ISO, 2014) contributing to an increased discussion on the future of quality. The purpose of this research is to review available Quality Management approaches and outline, adding an academic perspective, expected developments for Quality within the 21st Century. This paper follows a qualitative approach, although data from international organizations is used. A literature review has been undertaken on quality management past and potential future trends. Based on these findings a model is proposed for organization quality management development and propositions for the future of quality management are advanced. Firstly, a state of the art of existing Quality Management approaches is presented, for example, like Total Quality Management (TQM) and Quality Gurus, ISO 9000 International Standards Series (with an outline of the expected changes for ISO 9001:2015), Six Sigma and Business Excellence Models.Secondly, building on theoretical and managerial approaches, a two dimensional matrix – Quality Engineering (QE - technical aspects of quality) and Quality Management (QM: soft aspects of quality) - is presented, outlining five proposed characterizations of Quality maturity levels and giving insights for applications and future developments. Literature review highlights that QM and QE may be addressing similar quality issues but their approaches are different in terms of scope breadth and intensity and they ought to complement and reciprocally reinforce one another. The challenges organizations face within the 21st century have stronger uncertainty, complexity, and differentiation. Two main propositions are advanced as relevant for 21st Century Quality: - QM importance for the sustainable success of organizations will increase and they should be aware of the larger ecosystem to be managed for improvement, possibly leading to the emergence of a new Quality paradigm, The Civilizacional Excellence paradigm. - QE should get more attention from QM and the Quality professionals will have to: a) Master and apply in wider contexts and in additional depth the Quality Tools (basic, intermediate and advanced); b) Have the soft skills needed for its success; c) Be results oriented and better understand and demonstrate the relationships between approaches and results These propositions challenge both scholars and practitioners for a sustained and supported discussion on the future of Quality. “All things are ready, if our mind be so.” (Shakespeare, Henry V, circa 1599).
Resumo:
ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.
Resumo:
We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stchastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, nonetheless SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS community, simulating the transitions between active and suppressed periods of tropical convection.