997 resultados para Bottled water


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates the water footprint of Spanish olives and olive oil over the period 1997-2008. In particular, it analyses the three colour components of the water footprint: green (rainwater stored in the soil), blue (surface and groundwater) and grey (freshwater required to assimilate load of pollutants). Apparent water productivity and virtual water embedded in olive oil exports have also been studied. Results show more than 99.5% of the water footprint of one liter of bottled olive oil is related to the olive production, whereas less than 0.5% is due to the other components such as bottle, cap and label. Over the studied period, the green water footprint in absolute terms of Spanish olive oil production represents about 72% in rainfed systems and just 12% in irrigated olive orchards. Blue and grey water footprints represent 6% and 10% of the national water footprint, respectively. It is shown that olive production is concentrated in regions with the smallest water footprint per unit of product. However, the increase of groundwater consumption in the main olive producing region (Andalusia), from 98 to 378 Mm3 between 1997 and 2008, has added significant pressure in the upstream Guadalquivir basin. This raises questions about the sustainability of irrigated olive orchards for export from the region. Finally, the virtual water related to olive oil exports illustrate the importance of green water footprint of rainfed olives amounting to about 77% of the total virtual water exports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and environment friendly analytical method is reported for total chromium determination and chromium speciation in water samples, whereby tungsten coil atomic emission spectrometry (WCAES) is combined with in situ ionic liquid formation dispersive liquid–liquid microextraction (in situ IL-DLLME). A two stage multivariate optimization approach has been developed employing a Plackett–Burman design for screening and selection of the significant factor involved in the in situ IL-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were complexant concentration: 0.5% (or 0.1%); complexant type: DDTC; IL anion: View the MathML sourcePF6−; [Hmim][Cl] IL amount: 60 mg; ionic strength: 0% NaCl; pH: 5 (or 2); centrifugation time: 10 min; and centrifugation speed: 1000 rpm. Under the optimized experimental conditions the method was evaluated and proper linearity was obtained with a correlation coefficient of 0.991 (5 calibration standards). Limits of detection and quantification for both chromium species were 3 and 10 µg L−1, respectively. This is a 233-fold improvement when compared with chromium determination by WCAES without using preconcentration. The repeatability of the proposed method was evaluated at two different spiking levels (10 and 50 µg L−1) obtaining coefficients of variation of 11.4% and 3.6% (n=3), respectively. A certified reference material (SRM-1643e NIST) was analyzed in order to determine the accuracy of the method for total chromium determination and 112.3% and 2.5 µg L−1 were the recovery (trueness) and standard deviation values, respectively. Tap, bottled mineral and natural mineral water samples were analyzed at 60 µg L−1 spiking level of total Cr content at two Cr(VI)/Cr(III) ratios, and relative recovery values ranged between 88% and 112% showing that the matrix has a negligible effect. To our knowledge, this is the first time that combines in situ IL-DLLME and WCAES.