978 resultados para Bothrops jararacussu venom
Resumo:
The myotoxic Lys-49 phospholipase bothropstoxin I was crystallized, and X-ray diffraction data were collected to 3.5 Angstrom resolution. Preliminary analysis reveals the presence of four molecules in the asymmetric unit.
Resumo:
Acidic phospholipase A(2) (PLA(2)) isoforms in snake venoms, particularly those from Bothrops jararacussu, have not been characterized. This article reports the isolation and partial biochemical, functional and structural characterization of four acidic PLA(2)s (designated SIIISPIIA, SIIISPIIB, SIIISPIIIA and SIIISPIIIB) from this venom. The single chain purified proteins contained 122 amino acid residues and seven disulfide bonds with approximate molecular masses of 15 kDa and isoelectric points of 5.3. The respective N-terminal sequences were: SIIISPIIA-SLWQFGKMIDYVMGEEGAKS; SIIISPIIB-SLWQFGKMIFYTGKNEPVLS; SIIISPIIIA-SLWQFGKMILYVMGGEGVKQ and SIIISPIIIB-SLWQFGKMIFYEMTGEGVL. Crystals of the acidic protein SIIISPIIIB diffracted beyond 1.8 Angstrom resolution. These crystals are monoclinic with unit cell dimensions of a = 40.1 Angstrom, b = 54.2 Angstrom and c = 90.7 Angstrom. The crystal structure has been refined to a crystallographic residual of 16.1% (R-free = 22.9%). Specific catalytic activity (U/mg) of the isolated acidic PLA(2)s were SIIISPIIA = 290.3 U/mg; SIIISPIIB = 279.0 U/mg; SIIISPIIIA = 270.7 U/mg and SIIISPIIIB = 96.5 U/mg. Although their myotoxic activity was low, SIIISPIIA, SIIISPIIIB and SIIISPIIIA showed significant anticoagulant activity. However, there was no indirect hemolytic activity. SIIISPIIIB revealed no anticoagulant, but presented indirect hemolytic activity. With the exception of SIIISPIIIB, which inhibited platelet aggregation, all the others were capable of inducing time-independent edema. Chemical modification with 4-bromophenacyl bromide did not inhibit the induction of edema, but did suppress other activities. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Large single crystals have been obtained of SIII-SPIII, a phospholipase A2 from the venom of Bothrops jararacussu. The crystals belong to the orthorhombic system space group C222, and diffract X-rays to a resolution of 1.9 Å. Preliminary analysis reveals the presence of one molecule in the crystallographic asymmetric unit. The crystal structure is currently being determined using molecular replacement techniques.
Resumo:
Bothropstoxin-I (BthTX-I), a Lys49 phospholipase A2 homolog with no apparent catalytic activity, was first isolated from Bothrops jararacussu snake venom and completely sequenced in this laboratory. It is a 121-amino-acid single polypeptide chain, highly myonecrotic, despite its inability to catalyze hydrolysis of egg yolk phospholipids, and has 14 half-cystine residues identified at positions 27, 29, 44, 45, 50, 51, 61, 84, 91, 96, 98, 105, 123, and 131 (numbering according to the conventional alignment including gaps, so that the last residue is Cys 131). In order to access its seven disulfide bridges, two strategies were followed: (1) Sequencing of isolated peptides from (tryptic + SV8) and chymotryptic digests by Edman-dansyl degradation; (2) crystallization of the protein and determination of the crystal structure so that at least two additional disulfide bridges could be identified in the final electron density map. Identification of the disulfide-containing peptides from the enzymatic digests was achieved following the disappearance of the original peptides from the HPLC profile after reduction and carboxymethylation of the digest. Following this procedure, four bridges were initially identified from the tryptic and SV8 digests: Cys50-Cysl31, Cys51-Cys98, Cys61-Cys91, and Cys84-Cys96. From the chymotryptic digest other peptides were isolated either containing some of the above bridges, therefore confirming the results from the tryptic digest, or presenting a new bond between Cys27 and Cys 123. The two remaining bridges were identified as Cys29-Cys45 and Cys44-Cysl05 by determination of the crystal structure, showing that BthTX-I disulfide bonds follow the normal pattern of group II PLA2s. © 2001 Plenum Publishing Corporation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A myotoxic phospholipase A2, named bothropstoxin II (BthTX-II), was isolated from the venom of the South American snake Bothrops jararacussu and the pathogenesis of myonecrosis induced by this toxin was studied in mice. BthTX-II induced a rapid increase in plasma creatine kinase levels. Histological and ultrastructural observations demonstrate that this toxin affects muscle fibers by first disrupting the integrity of plasma membrane, as delta lesions were the earliest morphological alteration and since the plasma membrane was interrupted or absent in many portions. In agreement with this hypothesis, BthTX-II released peroxidase entrapped in negatively charged multilamellar liposomes and behaved as an amphiphilic protein in charge shift electrophoresis, an indication that its mechanism of action might be based on the interaction and disorganization of plasma membrane phospholipids. Membrane damage was followed by a complex series of morphological alterations in intracellular structures, most of which are probably related to an increase in cytosolic calcium levels. Myofilaments became hypercontracted into dense clumps which alternated with cellular spaces devoid of myofibrillar material. Later on, myofilaments changed to a hyaline appearance with a more uniform distribution. Mitochondria were drastically affected, showing high amplitude swelling, vesiculation of cristae, formation of flocculent densities, and membrane disruption. By 24 hr, abundant polymorphonuclear leucocytes and macrophages were observed in the interstitial space as well as inside necrotic fibers. Muscle regeneration proceeded normally, as abundant myotubes and regenerating myofibers were observed 7 days after BthTX-II injection. By 28 days regenerating fibers had a diameter similar to that of adult muscle fibers, although they presented two distinctive features: central location of nuclei and some fiber splitting. This good regenerative response may be explained by the observation that BthTX-II does not affect blood vessels, nerves, or basal laminae. © 1991.
Resumo:
Snake venom glands are a rich source of bioactive molecules such as peptides, proteins and enzymes that show important pharmacological activity leading to in local and systemic effects as pain, edema, bleeding and muscle necrosis. Most studies on pharmacologically active peptides and proteins from snake venoms have been concerned with isolation and structure elucidation through methods of classical biochemistry. As an attempt to examine the transcripts expressed in the venom gland of Bothrops jararacussu and to unveil the toxicological and pharmacological potential of its products at the molecular level, we generated 549 expressed sequence tags (ESTs) from a directional cDNA library. Sequences obtained from single-pass sequencing of randomly selected cDNA clones could be identified by similarities searches on existing databases, resulting in 197 sequences with significant similarity to phospholipase A(2) (PLA(2)), of which 83.2% were Lys49-PLA(2) homologs (BOJU-1), 0.1% were basic Asp49-PLA(2)s (BOJU-II) and 0.6% were acidic Asp49-PLA(2)s (BOJU-III). Adjoining this very abundant class of proteins we found 88 transcripts codifying for putative sequences of metalloproteases, which after clustering and assembling resulted in three full-length sequences: BOJUMET-I, BOJUMET-II and BOJUMET-III; as well as 25 transcripts related to C-type lectin like protein including a full-length cDNA of a putative galactose binding C-type lectin and a cluster of eight serine-proteases transcripts including a full-length cDNA of a putative serine protease. Among the full-length sequenced clones we identified a nerve growth factor (Bj-NGF) with 92% identity with a human NGF (NGHUBM) and an acidic phospholipase A2 (BthA-I-PLA(2)) displaying 85-93% identity with other snake venom toxins. Genetic distance among PLA(2)s from Bothrops species were evaluated by phylogenetic analysis. Furthermore, analysis of full-length putative Lys49-PLA(2) through molecular modeling showed conserved structural domains, allowing the characterization of those proteins as group II PLA(2)s. The constructed cDNA library provides molecular clones harboring sequences that can be used to probe directly the genetic material from gland venom of other snake species. Expression of complete cDNAs or their modified derivatives will be useful for elucidation of the structure-function relationships of these toxins and peptides of biotechnological interest. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
The complete nucleotide sequence of a nerve growth factor precursor from Bothrops jararacussu snake (Bj-NGF) was determined by DNA sequencing of a clone from cDNA library prepared from the poly(A) + RNA of the venom gland of B.jararacussu. cDNA encoding Bj-NGF precursor contained 723 bp in length, which encoded a prepro-NGF molecule with 241 amino acid residues. The mature Bj-NGF molecule was composed of I 18 amino acid residues with theoretical pI and molecular weight of 8.31 and 13,537, respectively. Its amino acid sequence showed 97%, 96%, 93%, 86%, 78%, 74%, 76%, 76% and 55% sequential similarities with NGFs from Crotalus durissus terrificus, Agkistrodon halys pallas, Daboia (Vipera) russelli russelli, Bungarus multicinctus, Naja sp., mouse, human, bovine and cat, respectively. Phylogenetic analyses based on the amino acid sequences of 15 NGFs separate the Elapidae family (Naja and Bungarus) from those Crotalidae snakes (Bothrops, Crotalus and Agkistrodon). The three-dimensional structure of mature Bj-NGF was modeled based on the crystal structure of the human NGF. The model reveals that the core of NGF, formed by a pair of P-sheets, is highly conserved and the major mutations are both at the three beta-hairpin loops and at the reverse turn. (C) 2002 Societe francaise de biochimie et biologic moleculaire/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
BnSP-6 (myotoxin I) is a phospholipase A2 homologue isolated from Bothrops neuwiedi pauloensis venom. Crystals of BnSP-6 were obtained which diffracted X-rays to 2.5 Angstrom resolution using a synchrotron radiation source at room temperature and belong to space group P3(1)21. The unit cell dimensions are a=b=57.7, c=131.1 Angstrom. The structure was solved by molecular replacement using the coordinates of bothropstoxin I from B. jararacussu venom. There are two molecules in the asymmetric unit.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The crystal structure of Piratoxin-I (PrTX-I) a Lys49 homologue isolated from the venom of Bothrops pirajai has been determined and refined at 2.8 Angstrom to a crystallographic residual of 19.7% (R-free = 29.7%). Amino-acid sequence differences between catalytically active phospholipases and PrTX-I in the putative Ca2+-binding loop, specifically the substitutions Tyr28-->Asn, Gly32-->Leu and Asp49-->Lys, result in an altered conformation of this loop, the analysis of the position of the E-amino group of Lys49 in the PrTX-I structure indicates that it fills the site normally occupied by the calcium ion in the catalytically active phospholipases, In contrast to the homologous monomeric Lys49 variant from Agkistrodon piscivorus piscivorus (App), PrTX-I is present as a dimer in the crystalline state, as observed in the structures of myotoxin II from Bothrops asper and Bothropstoxin I from Bothrops jararacussu. The two molecules in the asymmetric unit in the crystal structure of PrTX-I are related by a nearly perfect two-fold symmetry axis, yet the dimeric structure is radically different from the dimeric structure of the phospholipase from Crotalus atrox. In the C. atrox structure the dimer interface occludes the active sites, whereas in the PrTX-I structure they are exposed to solvent, (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
The biological activity of the proline rich decapeptde Bj PRO 10c a processing product of the C type natriuretic peptide precursor protein, expressed in the brain and the venom gland of the pit viper Bothrops jararaca, was originally attributed to the inhibition of the somatic angiotensm converting enzyme activity with subsequent ant hypertensive effect However recent results suggest broader biological activity may also be involved in the cardiovascular effects of this peptide Here we show that Bj PRO 10c enhances and sustains the generation of nitric made (NO) by regulating argininosuccinate synthase activity and thereby velocity of the citrulline NO cycle Bj PRO 10c-mediated effects not restricted to the cardiovascular system since NO production was also induced in cells of astroglial origin Bj PRO 10c was internalized by C6 astroglioma cells where it induces NO production and upregulation of the citrulline NO cycle cells in a dose dependent fashion In view of that, astroglial cells function as L arginine pool for NO production in neighboring neurons, we suggest a regulatory function for Bj PRO-10c on the metabolism of this gaseous neurotransmitter in the CNS Moreover, proliferation of astroglial cells was reduced in the presence of Bj PRO 10c however, cell death was not induced Since NO donors have been studied for the treatment of solid cancers Bj PRO 10c may serve as structural model for developing drugs to improve the effects of cancer therapy based on the peptide`s ability to augment NO production (C) 2010 Elsevier B V All rights reserved