997 resultados para Boston University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complete understanding of high-intensity focused ultrasound-induced temperature changes in tissue requires insight into all potential mechanisms for heat deposition. Applications of therapeutic ultrasound often utilize acoustic pressures capable of producing cavitation activity. Recognizing the ability of bubbles to transfer acoustic energy into heat generation, a study of the role bubbles play in tissue hyperthermia becomes necessary. These bubbles are typically less than 50μm. This dissertation examines the contribution of bubbles and their motion to an enhanced heating effect observed in a tissue-mimicking phantom. A series of experiments established a relationship between bubble activity and an enhanced temperature rise in the phantom by simultaneously measuring both the temperature change and acoustic emissions from bubbles. It was found that a strong correlation exists between the onset of the enhanced heating effect and observable cavitation activity. In addition, the likelihood of observing the enhanced heating effect was largely unaffected by the insonation duration for all but the shortest of insonation times, 0.1 seconds. Numerical simulations were used investigate the relative importance of two candidate mechanisms for heat deposition from bubbles as a means to quantify the number of bubbles required to produce the enhanced temperature rise. The energy deposition from viscous dissipation and the absorption of radiated sound from bubbles were considered as a function of the bubble size and the viscosity of the surrounding medium. Although both mechanisms were capable of producing the level of energy required for the enhanced heating effect, it was found that inertial cavitation, associated with high acoustic radiation and low viscous dissipation, coincided with the the nature of the cavitation best detected by the experimental system. The number of bubbles required to account for the enhanced heating effect was determined through the numerical study to be on the order of 150 or less.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-intensity focused ultrasound is a form of therapeutic ultrasound which uses high amplitude acoustic waves to heat and ablate tissue. HIFU employs acoustic amplitudes that are high enough that nonlinear propagation effects are important in the evolution of the sound field. A common model for HIFU beams is the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation which accounts for nonlinearity, diffraction, and absorption. The KZK equation models diffraction using the parabolic or paraxial approximation. Many HIFU sources have an aperture diameter similar to the focal length and the paraxial approximation may not be appropriate. Here, results obtained using the “Texas code,” a time-domain numerical solution to the KZK equation, were used to assess when the KZK equation can be employed. In a linear water case comparison with the O’Neil solution, the KZK equation accurately predicts the pressure field in the focal region. The KZK equation was also compared to simulations of the exact fluid dynamics equations (no paraxial approximation). The exact equations were solved using the Fourier-Continuation (FC) method to approximate derivatives in the equations. Results have been obtained for a focused HIFU source in tissue. For a low focusing gain transducer (focal length 50λ and radius 10λ), the KZK and FC models showed excellent agreement, however, as the source radius was increased to 30λ, discrepancies started to appear. Modeling was extended to the case of tissue with the appropriate power law using a relaxation model. The relaxation model resulted in a higher peak pressure and a shift in the location of the peak pressure, highlighting the importance of employing the correct attenuation model. Simulations from the code that were compared to experimental data in water showed good agreement through the focal plane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stabilized micron-sized bubbles, known as contrast agents, are often injected into the body to enhance ultrasound imaging of blood flow. The ability to detect such bubbles in blood depends on the relative magnitude of the acoustic power backscattered from the microbubbles (‘signal’) to the power backscattered from the red blood cells (‘noise’). Erythrocytes are acoustically small (Rayleigh regime), weak scatterers, and therefore the backscatter coefficient (BSC) of blood increases as the fourth power of frequency throughout the diagnostic frequency range. Microbubbles, on the other hand, are either resonant or super-resonant in the range 5-30 MHz. Above resonance, their total scattering cross-section remains constant with increasing frequency. In the present thesis, a theoretical model of the BSC of a suspension of red blood cells is presented and compared to the BSC of Optison® contrast agent microbubbles. It is predicted that, as the frequency increases, the BSC of red blood cell suspensions eventually exceeds the BSC of the strong scattering microbubbles, leading to a dramatic reduction in signal-to-noise ratio (SNR). This decrease in SNR with increasing frequency was also confirmed experimentally by use of an active cavitation detector for different concentrations of Optison® microbubbles in erythrocyte suspensions of different hematocrits. The magnitude of the observed decrease in SNR correlated well with theoretical predictions in most cases, except for very dense suspensions of red blood cells, where it is hypothesized that the close proximity of erythrocytes inhibits the acoustic response of the microbubbles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acousto-optic imaging (AOI) in optically diffuse media is a hybrid imaging modality in which a focused ultrasound beam is used to locally phase modulate light inside of turbid media. The modulated optical field carries with it information about the optical properties in the region where the light and sound interact. The motivation for the development of AOI systems is to measure optical properties at large depths within biological tissue with high spatial resolution. A photorefractive crystal (PRC) based interferometry system is developed for the detection of phase modulated light in AOI applications. Two-wave mixing in the PRC creates a reference beam that is wavefront matched to the modulated optical field collected from the specimen. The phase modulation is converted to an intensity modulation at the optical detector when these two fields interfere. The interferometer has a high optical etendue, making it well suited for AOI where the scattered light levels are typically low. A theoretical model for the detection of acoustically induced phase modulation in turbid media using PRC based interferometry is detailed. An AOI system, using a single element focused ultrasound transducer to pump the AO interaction and the PRC based detection system, is fabricated and tested on tissue mimicking phantoms. It is found that the system has sufficient sensitivity to detect broadband AO signals generated using pulsed ultrasound, allowing for AOI at low time averaged ultrasound output levels. The spatial resolution of the AO imaging system is studied as a function of the ultrasound pulse parameters. A theoretical model of light propagation in turbid media is used to explore the dependence of the AO response on the experimental geometry, light collection aperture, and target optical properties. Finally, a multimodal imaging system combining pulsed AOI and conventional B- mode ultrasound imaging is developed. B-mode ultrasound and AO images of targets embedded in both highly diffuse phantoms and biological tissue ex vivo are obtained, and millimeter resolution is demonstrated in three dimensions. The AO images are intrinsically co-registered with the B-mode ultrasound images. The results suggest that AOI can be used to supplement conventional B-mode ultrasound imaging with optical information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one’s ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis. Complete occlusion and wall- puncture sealing are both possible depending on the exposure conditions. These results concur with prior clinical observations and may prove useful for planning of a more effective procedure in HIFU treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sound propagation in shallow water is characterized by interaction with the oceans surface, volume, and bottom. In many coastal margin regions, including the Eastern U.S. continental shelf and the coastal seas of China, the bottom is composed of a depositional sandy-silty top layer. Previous measurements of narrow and broadband sound transmission at frequencies from 100 Hz to 1 kHz in these regions are consistent with waveguide calculations based on depth and frequency dependent sound speed, attenuation and density profiles. Theoretical predictions for the frequency dependence of attenuation vary from quadratic for the porous media model of M.A. Biot to linear for various competing models. Results from experiments performed under known conditions with sandy bottoms, however, have agreed with attenuation proportional to f1.84, which is slightly less than the theoretical value of f2 [Zhou and Zhang, J. Acoust. Soc. Am. 117, 2494]. This dissertation presents a reexamination of the fundamental considerations in the Biot derivation and leads to a simplification of the theory that can be coupled with site-specific, depth dependent attenuation and sound speed profiles to explain the observed frequency dependence. Long-range sound transmission measurements in a known waveguide can be used to estimate the site-specific sediment attenuation properties, but the costs and time associated with such at-sea experiments using traditional measurement techniques can be prohibitive. Here a new measurement tool consisting of an autonomous underwater vehicle and a small, low noise, towed hydrophone array was developed and used to obtain accurate long-range sound transmission measurements efficiently and cost effectively. To demonstrate this capability and to determine the modal and intrinsic attenuation characteristics, experiments were conducted in a carefully surveyed area in Nantucket Sound. A best-fit comparison between measured results and calculated results, while varying attenuation parameters, revealed the estimated power law exponent to be 1.87 between 220.5 and 1228 Hz. These results demonstrate the utility of this new cost effective and accurate measurement system. The sound transmission results, when compared with calculations based on the modified Biot theory, are shown to explain the observed frequency dependence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For high-intensity focused ultrasound (HIFU) to continue to gain acceptance for cancer treatment it is necessary to understand how the applied ultrasound interacts with gas trapped in the tissue. The presence of bubbles in the target location have been thought to be responsible for shielding the incoming pressure and increasing local heat deposition due to the bubble dynamics. We lack adequate tools for monitoring the cavitation process, due to both limited visualization methods and understanding of the underlying physics. The goal of this project was to elucidate the role of inertial cavitation in HIFU exposures in the hope of applying noise diagnostics to monitor cavitation activity and control HIFU-induced cavitation in a beneficial manner. A number of approaches were taken to understand the relationship between inertial cavitation signals, bubble heating, and bubble shielding in agar-graphite tissue phantoms. Passive cavitation detection (PCD) techniques were employed to detect inertial bubble collapses while the temperature was monitored with an embedded thermocouple. Results indicate that the broadband noise amplitude is correlated to bubble-enhanced heating. Monitoring inertial cavitation at multiple positions throughout the focal region demonstrated that bubble activity increased prefocally as it diminished near the focus. Lowering the HIFU duty cycle had the effect of maintaining a more or less constant cavitation signal, suggesting the shielding effect diminished when the bubbles had a chance to dissolve during the HIFU off-time. Modeling the effect of increasing the ambient temperature showed that bubbles do not collapse as violently at higher temperatures due to increased vapor pressure inside the bubble. Our conclusion is that inertial cavitation heating is less effective at higher temperatures and bubble shielding is involved in shifting energy deposition at the focus. The use of a diagnostic ultrasound imaging system as a PCD array was explored. Filtering out the scattered harmonics from the received RF signals resulted in a spatially- resolved inertial cavitation signal, while the amplitude of the harmonics showed a correlation with temperatures approaching the onset of boiling. The result is a new tool for detecting a broader spectrum of bubble activity and thus enhancing HIFU treatment visualization and feedback.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acousto-optic (AO) sensing and imaging (AOI) is a dual-wave modality that combines ultrasound with diffusive light to measure and/or image the optical properties of optically diffusive media, including biological tissues such as breast and brain. The light passing through a focused ultrasound beam undergoes a phase modulation at the ultrasound frequency that is detected using an adaptive interferometer scheme employing a GaAs photorefractive crystal (PRC). The PRC-based AO system operating at 1064 nm is described, along with the underlying theory, validating experiments, characterization, and optimization of this sensing and imaging apparatus. The spatial resolution of AO sensing, which is determined by spatial dimensions of the ultrasound beam or pulse, can be sub-millimeter for megahertz-frequency sound waves.A modified approach for quantifying the optical properties of diffuse media with AO sensing employs the ratio of AO signals generated at two different ultrasound focal pressures. The resulting “pressure contrast signal” (PCS), once calibrated for a particular set of pressure pulses, yields a direct measure of the spatially averaged optical transport attenuation coefficient within the interaction volume between light and sound. This is a significant improvement over current AO sensing methods since it produces a quantitative measure of the optical properties of optically diffuse media without a priori knowledge of the background illumination. It can also be used to generate images based on spatial variations in both optical scattering and absorption. Finally, the AO sensing system is modified to monitor the irreversible optical changes associated with the tissue heating from high intensity focused ultrasound (HIFU) therapy, providing a powerful method for noninvasively sensing the onset and growth of thermal lesions in soft tissues. A single HIFU transducer is used to simultaneously generate tissue damage and pump the AO interaction. Experimental results performed in excised chicken breast demonstrate that AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposure parameters, results in more predictable lesion formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oceanic bubble plumes caused by ship wakes or breaking waves disrupt sonar communi- cation because of the dramatic change in sound speed and attenuation in the bubbly fluid. Experiments in bubbly fluids have suffered from the inability to quantitatively characterize the fluid because of continuous air bubble motion. Conversely, single bubble experiments, where the bubble is trapped by a pressure field or stabilizing object, are limited in usable frequency range, apparatus complexity, or the invasive nature of the stabilizing object (wire, plate, etc.). Suspension of a bubble in a viscoelastic Xanthan gel allows acoustically forced oscilla- tions with negligible translation over a broad frequency band. Assuming only linear, radial motion, laser scattering from a bubble oscillating below, through, and above its resonance is measured. As the bubble dissolves in the gel, different bubble sizes are measured in the range 240 – 470 μm radius, corresponding to the frequency range 6 – 14 kHz. Equalization of the cell response in the raw data isolates the frequency response of the bubble. Compari- son to theory for a bubble in water shows good agreement between the predicted resonance frequency and damping, such that the bubble behaves as if it were oscillating in water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unstable arterial plaque is likely the key component of atherosclerosis, a disease which is responsible for two-thirds of heart attacks and strokes, leading to approximately 1 million deaths in the United States. Ultrasound imaging is able to detect plaque but as of yet is not able to distinguish unstable plaque from stable plaque. In this work a scanning acoustic microscope (SAM) was implemented and validated as tool to measure the acoustic properties of a sample. The goal for the SAM is to be able to provide quantitative measurements of the acoustic properties of different plaque types, to understand the physical basis by which plaque may be identified acoustically. The SAM consists of a spherically focused transducer which operates in pulse-echo mode and is scanned in a 2D raster pattern over a sample. A plane wave analysis is presented which allows the impedance, attenuation and phase velocity of a sample to be de- termined from measurements of the echoes from the front and back of the sample. After the measurements, the attenuation and phase velocity were analysed to ensure that they were consistent with causality. The backscatter coefficient of the samples was obtained using the technique outlined by Chen et al [8]. The transducer used here was able to determine acoustic properties from 10-40 MHz. The results for the impedance, attenuation and phase velocity were validated for high and low-density polyethylene against published results. The plane wave approximation was validated by measuring the properties throughout the focal region and throughout a range of incidence angles from the transducer. The SAM was used to characterize a set of recipes for tissue-mimicking phantoms which demonstrate indepen- dent control over the impedance, attenuation, phase velocity and backscatter coefficient. An initial feasibility study on a human artery was performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL), the deposition of a high-energy proton beam into the liquid mercury target forms bubbles whose asymmetric collapse cause Cavitation Damage Erosion (CDE) to the container walls, thereby reducing its usable lifetime. One proposed solution for mitigation of this damage is to inject a population of microbubbles into the mercury, yielding a compliant and attenuative medium that will reduce the resulting cavitation damage. This potential solution presents the task of creating a diagnostic tool to monitor bubble population in the mercury flow in order to correlate void fraction and damage. Details of an acoustic waveguide for the eventual measurement of two-phase mercury-helium flow void fraction are discussed. The assembly’s waveguide is a vertically oriented stainless steel cylinder with 5.08cm ID, 1.27cm wall thickness and 40cm length. For water experiments, a 2.54cm thick stainless steel plate at the bottom supports the fluid, provides an acoustically rigid boundary condition, and is the mounting point for a hydrophone. A port near the bottom is the inlet for the fluid of interest. A spillover reservoir welded to the upper portion of the main tube allows for a flow-through design, yielding a pressure release top boundary condition for the waveguide. A cover on the reservoir supports an electrodynamic shaker that is driven by linear frequency sweeps to excite the tube. The hydrophone captures the frequency response of the waveguide. The sound speed of the flowing medium is calculated, assuming a linear dependence of axial mode number on modal frequency (plane wave). Assuming that the medium has an effective-mixture sound speed, and that it contains bubbles which are much smaller than the resonance radii at the highest frequency of interest (Wood’s limit), the void fraction of the flow is calculated. Results for water and bubbly water of varying void fraction are presented, and serve to demonstrate the accuracy and precision of the apparatus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well documented that the presence of even a few air bubbles in water can signifi- cantly alter the propagation and scattering of sound. Air bubbles are both naturally and artificially generated in all marine environments, especially near the sea surface. The abil- ity to measure the acoustic propagation parameters of bubbly liquids in situ has long been a goal of the underwater acoustics community. One promising solution is a submersible, thick-walled, liquid-filled impedance tube. Recent water-filled impedance tube work was successful at characterizing low void fraction bubbly liquids in the laboratory [1]. This work details the modifications made to the existing impedance tube design to allow for submersed deployment in a controlled environment, such as a large tank or a test pond. As well as being submersible, the useable frequency range of the device is increased from 5 - 9 kHz to 1 - 16 kHz and it does not require any form of calibration. The opening of the new impedance tube is fitted with a large stainless steel flange to better define the boundary condition on the plane of the tube opening. The new device was validated against the classic theoretical result for the complex reflection coefficient of a tube opening fitted with an infinite flange. The complex reflection coefficient was then measured with a bubbly liquid (order 250 micron radius and 0.1 - 0.5 % void fraction) outside the tube opening. Results from the bubbly liquid experiments were inconsistent with flanged tube theory using current bubbly liquid models. The results were more closely matched to unflanged tube theory, suggesting that the high attenuation and phase speeds in the bubbly liquid made the tube opening appear as if it were radiating into free space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is a draft 2 of a discussion paper written for Boston University Libraries

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A working paper written for Boston University Libraries to foster discussion about how to provide better support for BU faculty authors.