951 resultados para Bos indicus heifers
Resumo:
Puberty in Zebu heifers follows a pattern characterized by a decrease in the steroid feedback mechanism and an increase in LH concentration, which result in the first ovulation followed by a short estrous cycle and the onset of normal cycles thereafter. These events are similar to those observed in Bos taurus cattle but occur at a later age. The late onset of puberty is both genetic and environmental in origin and is reflected by the age at first calving that can be at 40 months of age or older in these animals. Age at puberty in Zebu heifers has been shown to have a high heritability. Consequently, selecting precocious heifers may be an effective means of reducing age at puberty in these animals and this approach is being adopted in commercial practice. Genetic selection is not the sole solution to the problem because environmental improvements are necessary, particularly in terms of improved nutrition. South American Zebu cattle are usually subject to sub-optimum nutritional and management conditions and, hence, exhibit late onset of puberty. Hybrids of Zebu and Bos taurus cattle exhibit heterosis in respect of the age of puberty with earlier onset than expected in crossbred animals. Recently, purebred South American Zebu cattle have been shown to have Bos taurus genes, indicating that there have been previous attempts to improve their productivity using this approach. It was concluded that the age at first calving in South American Zebu cattle can be reduced by exposing well-fed, yearling heifers to bulls and selecting, over several generations, those animals that become pregnant at an early age. (C) 2004 Published by Elsevier B.V.
Resumo:
To investigate why the preferred means to produce bovine embryos in Brazil has changed from in vivo to in vitro, we compared these two approaches in the same Nelore cows (n = 30) and assessed total embryo production and pregnancy rates. Without a specific schedule, all cows were subjected to ultrasound-guided ovum pick up (OPU)/in vitro production (IVP) and MOET, with intervals ranging from 15 to 45 d between procedures, respectively. To produce in vivo embryos, cows were superovulated and embryos were recovered nonsurgically from 1 to 3 times (1.4 +/- 0.6). whereas OPU/IVP was repeated from 1 to 5 times (3.2 +/- 1.2) in each donor cow during a 12-mo interval. Embryos obtained from both methods were transferred to crossbred heifers. on average. 25.6 +/- 15.3 immature oocytes were collected per OPU attempt. The average number of embryos produced by OPU/IVP (9.4 +/- 5.3) was higher (P < 0.05) than the MOET method (6.7 +/- 3.7). However, pregnancy rates were lower (P < 0.05) following transfer of IVP (33.5%) versus in vivo-derived embryos (41.5%) embryos. Embryonic losses between Days 30 and 60 and fetal sex ratio were similar (P > 0.05) between in vivo and in vitro-derived embryos. We concluded that in Nelore cows, with an interval of 15 d between OPU procedures, it was possible to produce more embryos and pregnancies compared to conventional MOET. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To produce an epidemiological map of neosporosis in Brazil and identify the types of transmission of this disease, the present study evaluated the occurrence of Neospora caninum in Nelore cattle (Bos indicus) in Presidente Prudent, west region of Sao Paulo state; its vertical transmission; and the early stage in which fetuses are infected. To achieve this, serum samples from 518 slaughtered pregnant heifers and their fetuses were tested by ELISA technique and fetal brain tissues subjected to PCR. One hundred and three heifers (19.88%) had antibodies to N. caninum, as well as 38 (36.8%) of fetuses from 4 months of gestation. The conventional PCR failed to detect N. caninum DNA. These findings show that neosporosis occurs in the area studied and that it may be transmitted the transplacental route, althought N. caninum had not detected in brain tissue from non-aborted fetuses. The use of nested PCR it would be applied to increase the sensitivy of test.
Resumo:
Present study aimed to evaluate gonadotropins profiles in 12 Nelore heifers, in order to test the hypothesis that FSH concentrations decrease and LH presents a transient increase during follicle selection. Blood samples from jugular vein were harvested twice daily starting at the time of ovulation (D0) until D5. Plasma samples were assayed for FSH and LH by double antibody radioimmunoassay method. LH and FSH assay sensitivity was 0,02ng/ml and 0,005ng/ml, respectively. The intraassay coefficient of variation was 13,6% and 18,8%, respectively. Data (mean±SEM) were normalized to follicle deviation and analyzed by ANOVA and by linear, cubic, and quadratic regressions. Comparisons between higher and lower FSH values were also performed by T-test. There was no effect of time in plasmatic FSH and LH circulating levels when variance analysis or regression analysis were performed. However, by T-test, FSH concentrationsreached the lowest plasmatic levels 36 (0,40±0,05ng/ml) and 60 hours (0,42±0,04ng/ml) after follicular deviation, comparatively to 36 hours before deviation, when the concentrations were maximal (0,63±0,08ng/ml). In conclusion, there is a FSH decrease, although a transient LH elevation has not been confirmed encompassing follicle deviation in Nelore females.
Resumo:
Background: Although there is some information in the literature discussing differences of the estrous cycle of Bos taurus and Bos indicus cattle, most of the data derive from studies performed in temperate climate countries, under environmental and nutritional conditions very different than those found in tropical countries. Moreover, the physiological basis for understanding the differences between Bos taurus and Bos indicus estrous cycles are still unknown. This review explores the physiological and metabolic bases for understanding the key differences between the Bos taurus and Bos indicus estrous cycle. Moreover, it presents recent results of studies that have directly compared reproductive variables between Zebu and European cattle. Review: The knowledge of reproductive physiology, especially the differences between Bos taurus and Bos indicus, is important for the development and application of different techniques of reproductive management in cattle. In this regard, overall, Bos indicus have a greater number of small ovarian follicles and ovulatory follicles are smaller as compared to Bos taurus. Consequently, Zebu cattle also have smaller corpus luteum (CL). Nevertheless, circulating concentrations of steroid and metabolic hormones are not necessarily higher in European cattle. In fact, some studies have shown that despite ovulating smaller follicles and having smaller CL, Bos indicus cows or heifers have higher circulating concentrations of estradiol, progesterone, insulin and IGF-I compared to Bos taurus females. In addition, there are also substantial differences between Bos indicus and Bos taurus cattle in relation to follicle size at the time of selection of the dominant follicle. Conclusion: Data from very recent studies performed in Brazil have corroborated results from previous reports that have observed substantial differences in the estrous cycle variables of Bos indicus versus Bos taurus cattle. Those differences are probably related to distinct metabolism and metabolic hormone concentrations between Zebu and European cattle. This increased knowledge will allow for the establishment of more adequate reproductive management protocols in both breeds of cattle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Temperament in cattle is defined as the fear-related behavioral responses when exposed to human handling. Our group evaluates cattle temperament using 1) chute score on a 1 to 5 scale that increases according to excitable behavior during restraint in a squeeze chute, 2) exit velocity (speed of an animal exiting the squeeze chute), 3) exit score (dividing cattle according to exit velocity into quintiles using a 1 to 5 scale where 1 = cattle in the slowest quintile and 5 = cattle in the fastest quintile), and 4) temperament score (average of chute and exit scores). Subsequently, cattle are assigned a temperament type of adequate temperament (ADQ; temperament score <= 3) or excitable temperament (EXC; temperament score > 3). To assess the impacts of temperament on various beef production systems, our group associated these evaluation criteria with productive, reproductive, and health characteristics of Bos taurus and Bos indicus-influenced cattle. As expected, EXC cattle had greater plasma cortisol vs. ADQ cattle during handling, independent of breed type (B. indicus x B. taurus, P < 0.01; B. taurus, P < 0.01; B. indicus, P = 0.04) or age (cows, P < 0.01; heifers or steers, P < 0.01). In regards to reproduction, EXC females had reduced annual pregnancy rates vs. ADQ cohorts across breed types (B. taurus, P = 0.03; B. indicus, P = 0.05). Moreover, B. taurus EXC cows also had decreased calving rate (P = 0.04), weaning rate (P = 0.09), and kilograms of calf weaned/cow exposed to breeding (P = 0.08) vs. ADQ cohorts. In regards to feedlot cattle, B. indicus EXC steers had reduced ADG (P = 0.02) and G:F (P = 0.03) during a 109-d finishing period compared with ADQ cohorts. Bos taurus EXC cattle had reduced weaning BW (P = 0.04), greater acute-phase protein response on feedlot entry (P <= 0.05), impaired feedlot receiving ADG (P = 0.05), and reduced carcass weight (P = 0.07) vs. ADQ cohorts. Acclimating B. indicus x B. taurus or B. taurus heifers to human handling improved temperament (P <= 0.02), reduced plasma cortisol (P < 0.01), and hastened puberty attainment (P <= 0.02). However, no benefits were observed when mature cows or feeder cattle were acclimated to human handling. In conclusion, temperament impacts productive, reproductive, and health characteristics of beef cattle independent of breed type. Hence, strategies to improve herd temperament are imperative for optimal production efficiency of beef operations based on B. taurus and B. indicus-influenced cattle.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Follicular estradiol triggers luteolysis in cattle. Therefore, the control of follicle growth and steroidogenesis is expected to modulate luteal function and might be used as an anti-luteolytic strategy to improve embryo survival. Objectives were to evaluate follicular dynamics, plasma concentrations of estradiol and luteal lifespan in Bos indicus and crossbred cows subjected to sequential follicular aspirations. From D13 to D25 of a synchronized cycle (ovulation = D1), Nelore or crossbred, non-pregnant and non-lactating cows were submitted to daily ultrasound-guided aspiration of follicles >6 mm (n = 10) or to sham aspirations (n = 8). Diameter of the largest follicle on the day of luteolysis (7.4 +/- 1.0 vs 9.7 +/- 1.0 mm; mean +/- SEM), number of days in which follicles >6 mm were present (2.3 +/- 0.4 vs 4.6 +/- 0.5 days) and daily mean diameter of the largest follicle between D15 and D19 (6.4 +/- 0.2 vs 8.5 +/- 0.3 mm) were smaller (p <0.01) in the aspirated group compared with the control group, respectively. Aspiration tended to reduce (p< 0.10) plasma estradiol concentrations between D18 and D20 (2.95 +/- 0.54 vs 4.30 +/- 0.55 pg/ml). The luteal lifespan was similar (p > 0.10) between the groups (19.6 +/- 0.4 days), whereas the oestrous cycle was longer (p <0.01) in the aspirated group (31.4 +/- 1.2 vs 21.2 +/- 1.3 days). Hyperechogenic structures were present at the sites of aspiration and were associated with increase in concentration of progesterone between luteolysis and oestrus. It is concluded that follicular aspiration extended the oestrous cycle and decreased the average follicular diameter on the peri-luteolysis period but failed to delay luteolysis.