869 resultados para Bootstrap (Estadistica)
Resumo:
In this article we examine sources of technical efficiency for rice farming in Bangladesh. The motivation for the analysis is the need to close the rice yield gap to enable food security. We employ the DEA double bootstrap of Simar and Wilson (2007) to estimate and explain technical efficiency. This technique overcomes severe limitations inherent in using the two-stage DEA approach commonly employed in the efficiency literature. From a policy perspective our results show that potential efficiency gains to reduce the yield gap are greater than previously found. Statistically positive influences on technical efficiency are education, extension and credit, with age being a negative influence.
Resumo:
The paper provides one of the first applications of the double bootstrap procedure (Simar and Wilson 2007) in a two-stage estimation of the effect of environmental variables on non-parametric estimates of technical efficiency. This procedure enables consistent inference within models explaining efficiency scores, while simultaneously producing standard errors and confidence intervals for these efficiency scores. The application is to 88 livestock and 256 crop farms in the Czech Republic, split into individual and corporate.
Resumo:
The paper provides one of the first applications of the double bootstrap procedure (Simar and Wilson 2007) in a two-stage estimation of the effect of environmental variables on non-parametric estimates of technical efficiency. This procedure enables consistent inference within models explaining efficiency scores, while simultaneously producing standard errors and confidence intervals for these efficiency scores. The application is to 88 livestock and 256 crop farms in the Czech Republic, split into individual and corporate.
Resumo:
Conventional seemingly unrelated estimation of the almost ideal demand system is shown to lead to small sample bias and distortions in the size of a Wald test for symmetry and homogeneity when the data are co-integrated. A fully modified estimator is developed in an attempt to remedy these problems. It is shown that this estimator reduces the small sample bias but fails to eliminate the size distortion.. Bootstrapping is shown to be ineffective as a method of removing small sample bias in both the conventional and fully modified estimators. Bootstrapping is effective, however, as a method of removing. size distortion and performs equally well in this respect with both estimators.
Resumo:
The calculation of interval forecasts for highly persistent autoregressive (AR) time series based on the bootstrap is considered. Three methods are considered for countering the small-sample bias of least-squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy–Fuller estimator in place of OLS; and the use of the Andrews–Chen estimator in place of OLS. All three methods of bias correction yield superior results to the bootstrap in the absence of bias correction. Of the three correction methods, the bootstrap prediction intervals based on the Roy–Fuller estimator are generally superior to the other two. The small-sample performance of bootstrap prediction intervals based on the Roy–Fuller estimator are investigated when the order of the AR model is unknown, and has to be determined using an information criterion.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
The usual tests to compare variances and means (e. g. Bartlett`s test and F-test) assume that the sample comes from a normal distribution. In addition, the test for equality of means requires the assumption of homogeneity of variances. In some situation those assumptions are not satisfied, hence we may face problems like excessive size and low power. In this paper, we describe two tests, namely the Levene`s test for equality of variances, which is robust under nonnormality; and the Brown and Forsythe`s test for equality of means. We also present some modifications of the Levene`s test and Brown and Forsythe`s test, proposed by different authors. We analyzed and applied one modified form of Brown and Forsythe`s test to a real data set. This test is a robust alternative under nonnormality, heteroscedasticity and also when the data set has influential observations. The equality of variance can be well tested by Levene`s test with centering at the sample median.
Resumo:
We study the threshold theta bootstrap percolation model on the homogeneous tree with degree b + 1, 2 <= theta <= b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p(f), such that a) for p > p(f), the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p < p(f) , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p(c), such that 0 < p(c) < p(f), with the following properties: 1) if p <= p(c), then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p > p(c), then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p < p(c), the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p = p(c), the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p(f)] and analytic on (p(c), p(f) ), admitting an analytic continuation from the right at p (c) and, only in the case theta = b, also from the left at p(f).
Resumo:
Using data from the United States, Japan, Germany , United Kingdom and France, Sims (1992) found that positive innovations to shortterm interest rates led to sharp, persistent increases in the price level. The result was conÖrmed by other authors and, as a consequence of its non-expectable nature, was given the name "price puzzle" by Eichenbaum (1992). In this paper I investigate the existence of a price puzzle in Brazil using the same type of estimation and benchmark identiÖcation scheme employed by Christiano et al. (2000). In a methodological improvement over these studies, I qualify the results with the construction of bias-corrected bootstrap conÖdence intervals. Even though the data does show the existence of a statistically signiÖcant price puzzle in Brazil, it lasts for only one quarter and is quantitatively immaterial
Resumo:
Using data from the United States, Japan, Germany , United Kingdom and France, Sims (1992) found that positive innovations to shortterm interest rates led to sharp, persistent increases in the price leveI. The result was confirmed by other authors and, as a consequence of its non-expectable nature, was given the name "price puzzle" by Eichenbaum (1992). In this paper I investigate the existence of a price puzzle in Brazil using the same type of estimation and benchmark identification scheme employed by Christiano et aI. (2000). In a methodological improvement over these studies, I qualify the results with the construction of bias-corrected bootstrap confidence intervals. Even though the data does show the existence of a statistically significant price puzzle in Brazil, it lasts for .only one quarter and is quantitatively immaterial.
Resumo:
This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice & Gloeckler, 1978) and the logistic model (Lawless, 1982) can befitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.
Resumo:
We discuss the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical or tricritical points. Starting from the kink S-matrix elements proposed by Chim and Zamolodchikov, the bootstrap is closed for the scaling regions of all critical points, and for the tricritical points when 4 > q greater than or equal to 2. We also note a curious appearance of the extended last line of Freudenthal's magic square in connection with the Potts models. (C) 2003 Elsevier B.V. B.V. All rights reserved.