881 resultados para Blue shark, Mediterranean phylogeography demography, mtDNA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to contribute to the debate about southern glacial refugia used by temperate species and more northern refugia used by boreal or cold-temperate species, we examined the phylogeography of a widespread snake species (Vipera berus) inhabiting Europe up to the Arctic Circle. The analysis of the mitochondrial DNA (mtDNA) sequence variation in 1043 bp of the cytochrome b gene and in 918 bp of the noncoding control region was performed with phylogenetic approaches. Our results suggest that both the duplicated control region and cytochrome b evolve at a similar rate in this species. Phylogenetic analysis showed that V. berus is divided into three major mitochondrial lineages, probably resulting from an Italian, a Balkan and a Northern (from France to Russia) refugial area in Eastern Europe, near the Carpathian Mountains. In addition, the Northern clade presents an important substructure, suggesting two sequential colonization events in Europe. First, the continent was colonized from the three main refugial areas mentioned above during the Lower-Mid Pleistocene. Second, recolonization of most of Europe most likely originated from several refugia located outside of the Mediterranean peninsulas (Carpathian region, east of the Carpathians, France and possibly Hungary) during the Mid-Late Pleistocene, while populations within the Italian and Balkan Peninsulas fluctuated only slightly in distribution range, with larger lowland populations during glacial times and with refugial mountain populations during interglacials, as in the present time. The phylogeographical structure revealed in our study suggests complex recolonization dynamics of the European continent by V. berus, characterized by latitudinal as well as altitudinal range shifts, driven by both climatic changes and competition with related species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genetic landscape of the European flora and fauna was shaped by the ebb and flow of populations with the shifting ice during Quaternary climate cycles. While this has been well demonstrated for lowland species, less is known about high altitude taxa. Here we analyze the phylogeography of the leaf beetle Oreina elongata from 20 populations across the Alps and Apennines. Three mitochondrial and one nuclear region were sequenced in 64 individuals. Within an mtDNA phylogeny, three of seven subspecies are monophyletic. The species is chemically defended and aposematic, with green and blue forms showing geographic variation and unexpected within-population polymorphism. These warning colors show pronounced east-west geographical structure in distribution, but the phylogeography suggests repeated origin and loss. Basal clades come from the central Alps. Ancestors of other clades probably survived across northern Italy and the northern Adriatic, before separation of eastern, southern and western populations and rapid spread through the western Alps. After reviewing calibrated gene-specific substitution rates in the literature, we use partitioned Bayesian coalescent analysis to date our phylogeography. The major clades diverged long before the last glacial maximum, suggesting that O. elongata persisted many glacial cycles within or at the edges of the Alps and Apennines. When analyzing additional barcoding pairwise distances, we find strong evidence to consider O. elongata as a species complex rather than a single species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the global phylogeography of the black sea urchin Arbacia lixula, an amphi-Atlantic echinoid with potential to strongly impact shallow rocky ecosystems. Sequences of the mitochondrial cytochrome c oxidase gene of 604 specimens from 24 localities were obtained, covering most of the distribution area of the species, including the Mediterranean and both shores of the Atlantic. Genetic diversity measures, phylogeographic patterns, demographic parameters and population differentiation were analysed. We found high haplotype diversity but relatively low nucleotide diversity, with 176 haplotypes grouped within three haplogroups: one is shared between Eastern Atlantic (including Mediterranean) and Brazilian populations, the second is found in Eastern Atlantic and the Mediterranean and the third is exclusively from Brazil. Significant genetic differentiation was found between Brazilian, Eastern Atlantic and Mediterranean regions, but no differentiation was found among Mediterranean sub-basins or among Eastern Atlantic sub-regions. The star-shaped topology of the haplotype network and the unimodal mismatch distributions of Mediterranean and Eastern Atlantic samples suggest that these populations have suffered very recent demographic expansions. These expansions could be dated 94-205 kya in the Mediterranean, and 31-67 kya in the Eastern Atlantic. In contrast, Brazilian populations did not show any signature of population expansion. Our results indicate that all populations of A. lixula constitute a single species. The Brazilian populations probably diverged from an Eastern Atlantic stock. The present-day genetic structure of the species in Eastern Atlantic and the Mediterranean is shaped by very recent demographic processes. Our results support the view (backed by the lack of fossil record) that A. lixula is a recent thermophilous colonizer which spread throughout the Mediterranean during a warm period of the Pleistocene, probably during the last interglacial. Implications for the possible future impact of A. lixula on shallow Mediterranean ecosystems in the context of global warming trends must be considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Australian wet forests have undergone a contraction in range since the mid-Tertiary, resulting in a fragmented distribution along the east Australian coast incorporating several biogeographical barriers. Variation in mitochondrial DNA and morphology within the satin bowerbird was used to examine biogeographical structure throughout almost the entire geographical extent of these wet forest fragments. We used several genetic analysis techniques, nested clade and barrier analyses, that use patterns inherent in the data to describe the spatial structuring. We also examined the validity of the two previously described satin bowerbird subspecies that are separated by well-defined biogeographical barriers and tested existing hypotheses that propose divergence occurs within each subspecies across two other barriers, the Black Mountain corridor and the Hunter Valley. Our data showed that the two subspecies were genetically and morphologically divergent. The northern subspecies, found in the Wet Tropics region of Queensland, showed little divergence across the Black Mountain corridor, a barrier found to be significant in other Wet Tropics species. Biogeographical structure was found through southeastern Australia; three geographically isolated populations showed genetic differentiation, although minimal divergence was found across the proposed Hunter Valley barrier. A novel barrier was found separating inland and coastal populations in southern New South Wales. Little morphological divergence was observed within subspecies, bar a trend for birds to be larger in the more southerly parts of the species' range. The results from both novel and well-established genetic analyses were similar, providing greater confidence in the conclusions about spatial divergence and supporting the validity of these new techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assessing patterns of connectivity at the community and population levels is relevant to marine resource management and conservation. The present study reviews this issue with a focus on the western Indian Ocean (WIO) biogeographic province. This part of the Indian Ocean holds more species than expected from current models of global reef fish species richness. In this study, checklists of reef fish species were examined to determine levels of endemism in each of 10 biogeographic provinces of the Indian Ocean. Results showed that the number of endemic species was higher in the WIO than in any other region of the Indian Ocean. Endemic species from the WIO on the average had a larger body size than elsewhere in the tropical Indian Ocean. This suggests an effect of peripheral speciation, as previously documented in the Hawaiian reef fish fauna, relative to other sites in the tropical western Pacific. To explore evolutionary dynamics of species across biogeographic provinces and infer mechanisms of speciation, we present and compare the results of phylogeographic surveys based on compilations of published and unpublished mitochondrial DNA sequences for 19 Indo-Pacific reef-associated fishes (rainbow grouper Cephalopholis argus, scrawled butterflyfish Chaetodon meyeri, bluespot mullet Crenimugil sp. A, humbug damselfish Dascyllus abudafur/Dascyllus aruanus, areolate grouper Epinephelus areolatus, blacktip grouper Epinephelus fasciatus, honeycomb grouper Epinephelus merra, bluespotted cornetfish Fistularia commersonii, cleaner wrasse Labroides sp. 1, longface emperor Lethrinus sp. A, bluestripe snapper Lutjanus kasmira, unicornfishes Naso brevirosris, Naso unicornis and Naso vlamingii, blue-spotted maskray Neotrygon kuhlii, largescale mullet Planiliza macrolepis, common parrotfish Scarus psicattus, crescent grunter Terapon jarbua, whitetip reef shark Triaenodon obesus) and three coastal Indo-West Pacific invertebrates (blue seastar Linckia laevigata, spiny lobster Panulirus homarus, small giant clam Tridacna maxima). Heterogeneous and often unbalanced sampling design, paucity of data in a number of cases, and among-species discrepancy in phylogeographic structure precluded any generalization regarding phylogeographic patterns. Nevertheless, the WIO might have been a source of haplotypes in some cases and it also harboured an endemic clade in at least one case. The present survey also highlighted likely cryptic species. This may eventually affect the accuracy of the current checklists of species, which form the basis of some of the recent advances in Indo-West Pacific marine ecology and biogeography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deep-sea lantern shark Etmopterus spinax occurs in the northeast Atlantic on or near the bottoms of the outer continental shelves and slopes, and is regularly captured as bycatch in deep-water commercial fisheries. Given the lack of knowledge on the impacts of fisheries on this species, a demographic analysis using age-based Leslie matrices was carried out. Given the uncertainties in the mortality estimates and in the available life history parameters, several different scenarios, some incorporating stochasticity in the life history parameters (using Monte Carlo simulation), were analyzed. If only natural mortality were considered, even after introducing uncertainties in all parameters, the estimated population growth rate (A) suggested an increasing population. However, if fishing mortality from trawl fisheries is considered, the estimates of A either indicated increasing or declining populations. In these latter cases, the uncertainties in the species reproductive cycle seemed to be particularly relevant, as a 2-year reproductive cycle indicated a stable population, while a longer (3-year cycle) indicated a declining population. The estimated matrix elasticities were in general higher for the survivorship parameters of the younger age classes and tended to decrease for the older ages. This highlights the susceptibility of this deep-sea squaloid to increasing fishing mortality, emphasizing that even though this is a small-sized species, it shows population dynamics patterns more typical of the larger-sized and in general more vulnerable species. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine turtles are increasingly being threatened worldwide by anthropogenic activities. Better understanding of their life cycle, behavior and population structure is imperative for the design of adequate conservation strategies. The mtDNA control region is a fast-evolving matrilineal marker that has been employed in the study of marine turtle populations. We developed and tested a simple molecular tracing system for Caretta caretta mtDNA haplotypes by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Using this technique, we were able to distinguish the SSCP patterns of 18 individuals of the haplotypes CC-A4, CC-A24 and CCxLO, which are commonly found in turtles sampled on the Brazilian coast. When we analyzed 15 turtles with previously unknown sequences, we detected two other haplotypes, in addition to the other four. Based on DNA sequencing, they were identified as the CC-A17 and CC-A1 haplotypes. Further analyses were made with the sea turtles, Chelonia mydas (N = 8), Lepidochelys olivacea (N = 3) and Eretmochelys imbricata (N = 1), demonstrating that the PCR-SSCP technique is able to distinguish intra-and interspecific variation in the family Cheloniidae. We found that this technique can be useful for identifying sea turtle mtDNA haplotypes, reducing the need for sequencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: Approximately four million Africans were taken as slaves to Brazil, where they interbred extensively with Amerindians and Europeans. We have previously shown that while most White Brazilians carry Y chromosomes of European origin, they display high proportions of African and Amerindian mtDNA lineages, because of sex-biased genetic admixture. Methods: We studied the Y chromosome and mtDNA haplogroup structure of 120 Black males from Sao Paulo, Brazil. Results: Only 48% of the Y chromosomes, but 85% of the mtDNA haplogroups were characteristic of sub-Saharan Africa, confirming our previous observation of sexually biased mating. We mined literature data for mtDNA and Y chromosome haplogroup frequencies for African native populations from regions involved in Atlantic Slave Trade. Principal Components Analysis and Bayesian analysis of population structure revealed no genetic differentiation of Y chromosome marker frequencies between the African regions. However, mtDNA examination unraveled considerable genetic structure, with three clusters at Central-West Africa, West Africa and Southeast Africa. A hypothesis is proposed to explain this structure. Conclusion: Using these mtDNA data we could obtain for the first time an estimate of the relative ancestral contribution of Central-West (0.445), West (0.431) and Southeast Africa (0.123) to African Brazilians from Sao Paulo. These estimates are consistent with historical information. Copyright (c) 2008 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several small isolates of rainforest situated on the central eastern coast of Australia are home to a rich herpetofauna, including four endemic species of leaftail geckos (Phyllurus spp.) and two skinks (Eulamprus spp.). To examine the extent and geographic pattern of historical subdivision among isolates, we assayed mtDNA variation in two species endemic to rainforests of this region (Phyllurus ossa and Eulamprus amplus) and, for comparison, a more widespread and less specialised lizard, Carlia rhomboidalis. There is a clear genetic signature of historical changes in population size and distribution in P. ossa that is consistent with Pleistocene (or earlier) rainforest contraction and subsequent expansion. Although more pronounced in the gecko, phylogeographic structure was congruent between E. amplus and P. ossa. In contrast to the saxicolous, rainforest-restricted P. ossa and E. amplus, the rainforest-generalist species, C. rhomboidalis, does not display strong geographic population structure. The differences in genetic population structure exhibited by the three species are consistent with species-specific differences in ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the phylogeography of two closely related Australian frog species from open forest habitats, Limnodynastes tasmaniensis and L. peronii, using mitochondrial ND4 sequence data. Comparison of our results with previous work on Litoria fallax allowed us to test the generality of phylogeographic patterns among non-rainforest anurans along the east coast of Australia. In general, there was no strong evidence for congruence between overall patterns of genetic structure in the three species. However, phylogenetic breaks congruent with the position of the Burdekin Gap were detected at some level in all species. As previously noted for closed forest taxa, this area of dry habitat appears to have been an important influence on the evolution of several open forest taxa. There were broad geographic similarities in the phylogenetic structuring of southern populations of L. peronii and L. tasmaniensis. Contrarily, although the McPherson Range has previously been noted to coincide geographically with a major mtDNA phylogenetic break in Litoria fallax this pattern is not apparent in L. peronii or L. tasmaniensis. It appears that major phylogeographic splits within L. peronii and L. tasmaniensis may predate the Quaternary. We conclude that phylogeographies of open forest frogs are complex and more difficult to predict than for rainforest taxa, mainly due to an absence of palaeomodels for historical distributions of non-rainforest habitats. (C) 2001 The Linnean Society of London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.