962 resultados para Blood Gas Monitoring, Transcutaneous
Resumo:
According to recent international guidelines, 24-h ambulatory blood pressure monitoring plays an important role in the diagnostic and therapeutic approach of arterial hypertension. Indications of this technique are multiple, concerning both day- and night-time blood pressures. Blood pressures provided by ambulatory monitoring may be used to stratify cardiovascular risk.
Resumo:
OBJECTIVE: Current hypertension guidelines stress the importance to assess total cardiovascular risk but do not describe precisely how to use ambulatory blood pressures in the cardiovascular risk stratification. METHOD: We calculated here global cardiovascular risk according to 2003 European Society of Hypertension/European Society of Cardiology guidelines in 127 patients in whom daytime ambulatory blood pressures were recorded and carotid/femoral ultrasonography performed. RESULTS: The presence of ambulatory blood pressures >or =135/85 mmHg shifted cardiovascular risk to higher categories, as did the presence of hypercholesterolemia and, even more so, the presence of atherosclerotic plaques. CONCLUSION: Further studies are, however, needed to define the position of ambulatory blood pressures in the assessment of cardiovascular risk.
Resumo:
Ambulatory blood pressure monitoring (ABPM) is being used increasingly in both clinical practice and hypertension research. Although there are many guidelines that emphasize the indications for ABPM, there is no comprehensive guideline dealing with all aspects of the technique. It was agreed at a consensus meeting on ABPM in Milan in 2011 that the 34 attendees should prepare a comprehensive position paper on the scientific evidence for ABPM.This position paper considers the historical background, the advantages and limitations of ABPM, the threshold levels for practice, and the cost-effectiveness of the technique. It examines the need for selecting an appropriate device, the accuracy of devices, the additional information and indices that ABPM devices may provide, and the software requirements.At a practical level, the paper details the requirements for using ABPM in clinical practice, editing considerations, the number of measurements required, and the circumstances, such as obesity and arrhythmias, when particular care needs to be taken when using ABPM.The clinical indications for ABPM, among which white-coat phenomena, masked hypertension, and nocturnal hypertension appear to be prominent, are outlined in detail along with special considerations that apply in certain clinical circumstances, such as childhood, the elderly and pregnancy, and in cardiovascular illness, examples being stroke and chronic renal disease, and the place of home measurement of blood pressure in relation to ABPM is appraised.The role of ABPM in research circumstances, such as pharmacological trials and in the prediction of outcome in epidemiological studies is examined and finally the implementation of ABPM in practice is considered in relation to the issue of reimbursement in different countries, the provision of the technique by primary care practices, hospital clinics and pharmacies, and the growing role of registries of ABPM in many countries.
Resumo:
PURPOSE: Resuscitated cardiac arrest (CA) patients typically receive therapeutic hypothermia, but arterial blood gases (ABGs) are often assessed after adjustment to 37°C (alpha-stat) instead of actual body temperature (pH-stat). We sought to compare alpha-stat and pH-stat assessment of Pao2 and Paco2 in such patients. MATERIALS AND METHODS: Using ABG data obtained during the first 24 hours of intensive care unit admission, we determined the impact of measured alpha vs calculated pH-stat on Pao2 and Paco2 on patient classification and outcomes for CA patients. RESULTS: We assessed 1013 ABGs from 120 CA patients with a median age of patients 66 years (interquartile range, 50-76). Median alpha-stat Pao2 changed from 122 (95-156) to 107 (82-143) mm Hg with pH-stat and median Paco2 from 39 (34-46) to 35 (30-41) mm Hg (both P < .001). Using the categories of hyperoxemia, normoxemia, and hypoxemia, pH-stat estimation of Pao2 reclassified approximately 20% of patients. Using the categories of hypercapnia, normocapnia, and hypocapnia, pH stat estimation of Paco2 reclassified approximately 40% of patients. The mortality of patients in different Pao2 and Paco2 categories was similar for pH-stat and alpha-stat. CONCLUSIONS: Using the pH-stat method, fewer resuscitated CA patients admitted to intensive care unit were classified as hyperoxemic or hypercapnic compared with alpha-stat. These findings suggest an impact of ABG assessment methodology on Pao2, Paco2, and patient classification but not on associated outcomes.
Resumo:
BACKGROUND AND OBJECTIVE: Arterial base excess and lactate levels are key parameters in the assessment of critically ill patients. The use of venous blood gas analysis may be of clinical interest when no arterial blood is available initially. METHODS: Twenty-four pigs underwent progressive normovolaemic haemodilution and subsequent progressive haemorrhage until the death of the animal. Base excess and lactate levels were determined from arterial and central venous blood after each step. In addition, base excess was calculated by the Van Slyke equation modified by Zander (BE(z)). Continuous variables were summarized as mean +/- SD and represent all measurements (n = 195). RESULTS: Base excess according to National Committee for Clinical Laboratory Standards for arterial blood was 2.27 +/- 4.12 versus 2.48 +/- 4.33 mmol(-l) for central venous blood (P = 0.099) with a strong correlation (r(2) = 0.960, P < 0.001). Standard deviation of the differences between these parameters (SD-DIFBE) did not increase (P = 0.355) during haemorrhage as compared with haemodilution. Arterial lactate was 2.66 +/- 3.23 versus 2.71 +/- 2.80 mmol(-l) in central venous blood (P = 0.330) with a strong correlation (r(2) = 0.983, P < 0.001). SD-DIFLAC increased (P < 0.001) during haemorrhage. BE(z) for central venous blood was 2.22 +/- 4.62 mmol(-l) (P = 0.006 versus arterial base excess according to National Committee for Clinical Laboratory Standards) with strong correlation (r(2) = 0.942, P < 0.001). SD-DIFBE(z)/base excess increased (P < 0.024) during haemorrhage. CONCLUSION: Central venous blood gas analysis is a good predictor for base excess and lactate in arterial blood in steady-state conditions. However, the variation between arterial and central venous lactate increases during haemorrhage. The modification of the Van Slyke equation by Zander did not improve the agreement between central venous and arterial base excess.
Resumo:
This document summarizes the available evidence and provides recommendations on the use of home blood pressure monitoring in clinical practice and in research. It updates the previous recommendations on the same topic issued in year 2000. The main topics addressed include the methodology of home blood pressure monitoring, its diagnostic and therapeutic thresholds, its clinical applications in hypertension, with specific reference to special populations, and its applications in research. The final section deals with the problems related to the implementation of these recommendations in clinical practice.
Resumo:
Non-invasive ambulatory blood pressure monitoring has proved to be very useful in evaluating hypertensive patients. However, most previous studies were performed in specialised centres. Here the results of two trials are presented in which private physicians used ambulatory BP monitoring to assess the efficacy of antihypertensive drugs. The results were very similar to those observed previously in specialised clinics. In the individual patient, the level of ambulatory recorded pressure could not be predicted based on BP readings taken at the doctor's office. Also, the BP response to antihypertensive therapy was more reproducible when evaluated by ambulatory BP monitoring than by the doctor. Thus, the use of noninvasive ambulatory BP monitoring is also very appropriate in everyday practice for the management of hypertensive patients.
Resumo:
In this retrospective analysis, we assessed the usefulness of ambulatory blood pressure monitoring in the evaluation of elderly hypertensive patients. Thirty-eight untreated and 31 treated hypertensives aged 70 years or more had a systolic blood pressure greater than or equal to 160 mmHg and/or a diastolic blood pressure greater than or equal to 95 mmHg in the clinic. All 69 patients underwent blood pressure monitoring during their customary daily activities using a portable semi-automatic blood pressure recorder (Remier M2000). The mean of all blood pressures obtained with this device was taken as the ambulatory recorded blood pressure. Recorded blood pressures were greater than or equal to 160 mmHg systolic and greater than or equal to 90 mmHg diastolic in 17 untreated and 17 treated patients. In these patients, the introduction of antihypertensive therapy, or its modification, markedly reduced blood pressure during a 4-8 month follow-up. A further 21 untreated and 14 treated patients had recorded blood pressures of less than 160/90 mmHg. The treatment status of these patients was left unchanged for 4-8 months of follow-up. Nevertheless, office blood pressure in these groups, with no change in treatment, decreased significantly during the observation period. At the last visit to the outpatient clinic, there was no significant difference in blood pressure between the four subgroups of patients. Thus, ambulatory blood pressure monitoring appears to be useful in the elderly hypertensive patient in detecting those patients whose blood pressure is elevated only in the clinic. Blood pressure profiles obtained outside the clinic may therefore be useful in making therapeutic decisions in the aged hypertensive.