125 resultados para Bitectatodinium spongium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to compare the sea-surface conditions in the Black Sea during the Holocene and Eemian, sapropelic parts of marine core 22-GC3 (42°13.53′N/36°29.55′E, 838 m water depth) were studied for organic-walled dinoflagellate cyst content. The record shows a change from freshwater/brackish assemblages (Pyxidinopsis psilata, Spiniferites cruciformis, and Caspidinium rugosum) to more marine assemblages (Lingulodinium machaerophorum and Spiniferites ramosus complex) during each interglacial, due to the inflow of saline Mediterranean water. The lacustrine–marine transitions in 22-GC3 occurred at ~ 8.3 cal kyr BP during the early Holocene and ~ 128 kyr BP during the early Eemian, slightly later compared to the onset of interglacial conditions on the adjacent land. Dinoflagellate cyst assemblages reveal higher sea-surface salinity (~ 28–30) (e.g. Spiniferites pachydermus, Bitectatodinium tepikiense, and Spiniferites mirabilis) around ~ 126.5–121 kyr BP in comparison to the Holocene (~ 15–20) as well as relatively high sea-surface temperature (e.g. Tuberculodinium vancampoae, S. pachydermus, and S. mirabilis) especially at ~ 127.6–125.3 kyr BP. Establishment of high sea-surface salinity during the Eemian correlates very well with reconstructed relatively high global sea-level and is explained as a combined effect of increased Mediterranean supply and high temperatures at the beginning of the last interglacial. The observed changes in the dinocyst record highlight the importance of nutrients for the composition of the Eemian and Holocene dinocyst assemblages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mid-Pliocene was an episode of prolonged global warmth and strong North Atlantic thermohaline circulation, interrupted briefly at circa 3.30 Ma by a global cooling event corresponding to marine isotope stage (MIS) M2. Paleoceanographic changes in the eastern North Atlantic have been reconstructed between circa 3.35 and 3.24 Ma at Deep Sea Drilling Project Site 610 and Integrated Ocean Drilling Program Site 1308. Mg/Ca ratios and d18O from Globigerina bulloides are used to reconstruct the temperature and relative salinity of surface waters, and dinoflagellate cyst assemblages are used to assess variability in the North Atlantic Current (NAC). Our sea surface temperature data indicate warm waters at both sites before and after MIS M2 but a cooling of ~2-3°C during MIS M2. A dinoflagellate cyst assemblage overturn marked by a decline in Operculodinium centrocarpum reflects a southward shift or slowdown of the NAC between circa 3.330 and 3.283 Ma, reducing northward heat transport 23-35 ka before the global ice volume maximum of MIS M2. This will have established conditions that ultimately allowed the Greenland ice sheet to expand, leading to the global cooling event at MIS M2. Comparison with an ice-rafted debris record excludes fresh water input via icebergs in the northeast Atlantic as a cause of NAC decline. The mechanism causing the temporary disruption of the NAC may be related to a brief reopening of the Panamanian Gateway at about this time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early Late Pliocene (3.6 to ~3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ~3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Our geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current (NAC) and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the Greenland ice sheet during MIS M2, despite near-modern atmospheric CO2 concentrations. Before and after MIS M2, heat transport via the NAC was crucial in maintaining warm climates comparable to those predicted for the end of this century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to document the palaeoecological affinities of individual extant and extinct dinoflagellate cysts, Late Pliocene and Early Pleistocene dinoflagellate cyst assemblages have been compared with geochemical data from the same samples. Mg/Ca ratios of Globigerina bulloides were measured to estimate the spring-summer sea-surface temperatures from four North Atlantic IODP/DSDP sites. Currently, our Pliocene-Pleistocene database contains 204 dinoflagellate cyst samples calibrated to geochemical data. This palaeo-database is compared with modern North Atlantic and global datasets. The focus lies in the quantitative relationship between Mg/Ca-based (i.e. spring-summer) sea-surface temperature (SSTMg/Ca) and dinoflagellate cyst distributions. In general, extant species are shown to have comparable spring-summer SST ranges in the past and today, demonstrating that our new approach is valid for inferring spring-summer SST ranges for extinct species. For example, Habibacysta tectata represents SSTMg/Ca values between 10° and 15°C when it exceeds 30% of the assemblage, and Invertocysta lacrymosa exceeds 15% when SSTMg/Ca values are between 18.6° and 23.5°C. However, comparing Pliocene and Pleistocene SSTMg/Ca values with present day summer values for the extant Impagidinium pallidum suggests a greater tolerance of higher temperatures in the past. This species occupies more than 5% of the assemblage at SSTMg/Ca values of 11.6-17.9°C in the Pliocene and Pleistocene, whereas present day summer SSTs are around -1.7 to 6.9°C. This observation questions the value of Impagidinium pallidum as reliable indicator of cold waters in older deposits, and may explain its bipolar distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To obtain insight into character and potential forcing of short-term climatic and oceanographic variability in the southern Italian region during the "Roman Classical Period" (60 BC-AD 200), climatic and environmental reconstructions based on a dinoflagelate cyst record from a well dated site in the Gulf of Taranto located at the distal end of the Po-river discharge plume have been established with high temporal resolution. Short-term fluctuations in accumulation rates of the Adriatic Surface Water species Lingulodinium machaerophorum, the freshwater algae Concentricystes and species resistant to aerobic degradation indicate that fluctuations in the trophic state of the upper waters are related to river discharge of northern and eastern Italian rivers which in turn are strongly related to precipitation in Italy. The dinoflagellate cyst association indicates that local sea surface temperatures which in this region are strongly linked to local air temperatures were slightly higher than today. We reconstruct that sea surface temperatures have been relatively high and stable between 60 BC-AD 90 and show a decreasing trend after AD 90. Fluctuations in temperature and river discharge rates have a strong cyclic character with main cyclicities of 7-8 and 11 years. We argue that these cycles are related to variations of the North Atlantic Oscillation climate mode. A strong correlation is observed with global variation in Delta14C anomalies suggesting that solar variability might be one of the major forcings of the regional climate. Apart from cyclic climate variability we observed a good correlation between non-cyclic temperature drops and global volcanic activity indicating that the latter forms an additional major forcing factor of the southern Italian climate during the Roman Classical Period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palynomorphs were studied in samples from Ocean Drilling Program (ODP) Leg 189, Hole 1168A (slope of the western margin of Tasmania; 2463 m water depth). Besides organic-walled dinoflagellate cysts (dinocysts), broad categories of other palynomorphs were quantified in terms of relative abundance. In this contribution, we provide an overview of the early late Eocene-Quaternary dinocyst distribution and illustrate main trends in palynomorph distribution. Dinocyst species throughout Hole 1168A are largely cosmopolitan with important contributions of typical low-latitude taxa and virtual absence of endemic Antarctic taxa. Dinocyst stratigraphic distribution broadly matches that known from the Northern Hemisphere and equatorial regions, although significant differences are noted. Selected potentially biochronostratigraphically useful events are summarized. The distribution of dinocysts in the middle-upper Miocene interval is rather patchy, probably due to prolonged exposure to oxygen. An important general aspect in the dinocyst assemblages is the near absence of Antarctic endemic species and the apparent influence of relatively warm waters throughout the succession at Site 1168. General palynomorph distribution indicates continued deepening from an initial shallow, even restricted, marine setting from late Eocene-Quaternary times. A curious massive influx of small skolochorate acritarchs is recorded throughout the late early-early middle Miocene; the significance of this signal is not yet understood. A general long-term oligotrophic nature of the surface waters influencing Site 1168 is suggested from the low abundance of (proto) peridinioid, presumably heterotrophic, species. The overall dinocyst distribution pattern corresponds to the long-term existence of a Leeuwin-like current influencing the region, including Site 1168, confirming results of earlier studies on other microfossil groups. The occasional influence of colder surface water conditions is, however, also apparent, notably during the late Pliocene-Quaternary, indicating the potential of high-resolution dinocyst analysis for future paleoceanographic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report contains the occurrence data for dinoflagellate cysts recorded from 163 samples taken from Sites 902 through 906, during Ocean Drilling Program (ODP) Leg 150. The dinoflagellate cyst (dinocyst) stratigraphy has been presented in Mountain, Miller, Blum, et al. (1994, doi:10.2973/odp.proc.ir.150.1994), and was based on these data. This report provides the full dinocyst data set supporting the dinocyst stratigraphic interpretations made in Mountain, Miller, Blum, et al. (1994). For Miocene shipboard dinocyst stratigraphy, I delineated 10 informal zones: pre-A, and A through I, in ascending stratigraphic order. These zones are defined in Shipboard Scientific Party (1994a, doi:10.2973/odp.proc.ir.150.103.1994), and are based on my studies of Miocene dinocyst stratigraphy in the Maryland and Virginia coastal plain (de Verteuil and Norris, 1991, 1992; de Verteuil, 1995). This zonation has been slightly revised (de Verteuil and Norris, 1996), and the new formal zone definitions are repeated below. Each new zone has an alpha-numeric abbreviation starting with "DN" (for Dinoflagellate Neogene). The equivalence between the informal zones reported in Mountain, Miller, Blum, et al. (1994), and the new DN zones is illustrated in Figure 1. For clarity, I delineated both zonations in the range charts that accompany this report (Tables 1-6). De Verteuil and Norris (1996a), using these and other data, correlated the DN zonation with the geological time scale of Berggren et al. (1995). Figure 2 summarizes these correlations and can be used to check the chronostratigraphic position of samples in this report, as determined by dinocyst stratigraphy. A thorough discussion of the basis for, and levels of uncertainty associated with, these correlations to the Cenozoic time scale can be found in de Verteuil and Norris (1996a). The Appendix lists all the dinocyst taxa recorded during shipboard analyses of Leg 150 samples. Open nomenclature is used for undescribed taxa. The range charts and Appendix also include reference to several new taxa that de Verteuil and Norris (1996b) described from Miocene coastal plain strata in Maryland and Virginia. Names of these taxa in Tables 1 through 6 and in the Appendix of this report are not intended for effective publication as defined in the International Code of Botanical Nomenclature (ICBN, Greuter et al., 1994). Therefore, taxonomic nomenclature contained in this report is not to be treated as meeting the conditions of effective and valid publication (ICBN; Article 29).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Quaternary organic-walled dinoflagellate cyst record of Site 1233 (41°S, offshore Chile) was studied with a ?200 year resolution spanning the last 25,000 years. The study provides the first continuous record of sub-recent and recent dinoflagellate cysts in the Southeast (SE) Pacific. Major changes in the composition of the cyst association, cyst concentration and morphology of Operculodinium centrocarpum reflect changes in sea surface temperature (SST), sea surface salinity (SSS), palaeoproductivity and upwelling intensity. These changes can be associated with latitudinal shifts of the circumpolar frontal systems. The high cyst concentration, high Brigantedinium spp. abundances, low species diversity and the occurrence of certain cold water species are supportive for a 7-10° equatorward shift of the Antarctic Circumpolar Current (ACC) during the coldest phase of the Last Glacial Maximum (LGM) between 25 and 21.1 cal ka BP. Deglacial warming initiated at ~18.6 cal ka BP. Termination I (18.6-11.1 cal ka BP) is interrupted by an unstable period of extreme seasonality, rather than a cooling event, between 14.4 and 13.2 cal ka BP, synchronous with the Antarctic Cold Reversal (ACR). The Holocene Maximum is observed between 11.6 and 9.8 cal ka BP and is typified by the most southward position of the northern margin of the ACC. A cooling phase occurred during the early Holocene (until ~7 cal ka BP) and during the last ~0.8 ka. Our data indicates that the SE Pacific (41°S) climate has been influenced over the whole record by changes in the Southern Hemisphere (SH) high-latitudes, while during the mid to late Holocene, also a tropical forcing mechanism was involved, including the El Niño Southern Oscillation and the variable Hadley cell intensity. Furthermore, this study showed a relationship between the variable morphology of the spines/processes of O. centrocarpum and the combined variation of sea surface salinity and temperature (SSS/SST-ratio).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study on ODP Leg 151 Hole 907A combines a detailed analysis of marine palynomorphs (dinoflagellate cysts, prasinophytes, and acritarchs) and a low-resolution alkenone-based sea-surface temperature (SST) record for the interval between 14.5 and 2.5 Ma, and allows to investigate the relationship between palynomorph assemblages and the paleoenvironmental evolution of the Iceland Sea. A high marine productivity is indicated in the Middle Miocene, and palynomorphs and SSTs both mirror the subsequent long-term Neogene climate deterioration. The diverse Middle Miocene palynomorph assemblages clearly diminish towards the impoverished assemblages of the Late Pliocene; parallel with a somewhat gradual decrease of SSTs being as high as 20 °C at ~13.5 Ma to around 8 °C at ~3 Ma. Superimposed, palynomorph assemblages not only reflect Middle to Late Miocene climate variability partly coinciding with the short-lived global Miocene isotope events (Mi-events), but also the initiation of a proto-thermohaline circulation across the Middle Miocene Climate Transition, which led to increased meridionality in the Nordic Seas. Last occurrences of species cluster during three events in the Late Miocene to Early Pliocene and are ascribed to the progressive strengthening and freshening of the proto-East Greenland Current towards modern conditions. A significant high latitude cooling between 6.5 and 6 Ma is depicted by the supraregional "Decahedrella event" coeval with lowest Miocene productivity and a SST decline. In the Early Pliocene, a transient warming is accompanied by surface water stratification and increased productivity that likely reflects a high latitude response to the global biogenic bloom. The succeeding crash in palynomorph accumulation, and a subsequent interval virtually barren of marine palynomorphs may be attributed to enhanced bottom water oxygenation and substantial sea ice cover, and indicates that conditions seriously affecting marine productivity in the Iceland Sea were already established well before the marked expansion of the Greenland Ice Sheet at 3.3 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dinoflagellate cysts, pollen, and spores were studied from 78 samples of the Eocene to Miocene section of ODP Site 643 at the outer Wring Plateau. Dinoflagellate cysts ranging from less than 1,000 to rarely over 30,000 per gram of sediment in the Paleogene, and generally between 50,000 and 100,000 in the Miocene were present. The shift to conspicuously higher cyst frequencies takes place in the lowermost Miocene section and appears to reflect increased cyst recruitment rather than a change in sedimentation rate. Of the 179 dinoflagellate cyst forms whose ranges were recorded, 129 are known species. Fifteen assemblage zones have been recognized, although the upper Eocene is missing and no substantial lower Eocene was recorded at Site 643. Norwegian Sea and Rockall Plateau zonations were compared with this study. Detailed correlation with existing onshore section zonations was difficult because key zonal species are inadequately represented; however, the middle to upper Miocene zonation established for Denmark is applicable. Pollen and spores occur with relatively low frequencies, and palynodebris is generally absent, in contrast to the observations from DSDP Leg 38. Thirty-nine samples from Eocene to Miocene sediments at Site 642 were studied and correlated with Site 643. A lower Eocene cyst assemblage present in Hole 642D is older than the questionably lower Eocene assemblage from Site 643. Site 642 has a lower Eocene to lower Miocene hiatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of quantitative and semiquantitative methods to assemblage data from dinoflagellate cysts shows potential for interpreting past environments, both in terms of paleotemperature estimates and in recognizing water masses and circulation patterns. Estimates of winter sea-surface temperature (WSST) were produced by using the Impagidinium Index (II) method, and by applying a winter-temperature transfer function (TFw). Estimates of summer sea-surface temperature (SSST) were produced by using a summer-temperature transfer function (TFs), two methods based on a temperature-distribution chart (ACT and ACTpo), and a method based on the ratio of gonyaulacoid:protoperidinioid specimens (G:P). WSST estimates from the II and TFw methods are in close agreement except where Impagidinium species are sparse. SSST estimates from TFs are more variable. The value of the G:P ratio for the Pliocene data in this paper is limited by the apparent sparsity of protoperidinioids, which results in monotonous SSST estimates of 14-26°C. The ACT methods show two biases for the Pliocene data set: taxonomic substitution may force 'matches' yielding incorrect temperature estimates, and the method is highly sensitive to the end-points of species distributions. Dinocyst assemblage data were applied to reconstruct Pliocene sea-surface temperatures between 3.5-2.5 Ma from DSDP Hole 552A, and ODP Holes 646B and 642B, which are presently located beneath cold and cool-temperate waters north of 56°N. Our initial results suggest that at 3.0 Ma, WSSTs were a few degrees C warmer than the present and that there was a somewhat reduced north-south temperature gradient. For all three sites, it is likely that SSSTs were also warmer, but by an unknown, perhaps large, amount. Past oceanic circulation in the North Atlantic was probably different from the present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palynomorphs were studied in samples from Ocean Drilling Program (ODP) Leg 189, Holes 1172A and 1172D (East Tasman Plateau; 2620 m water depth). Besides organic walled dinoflagellate cysts (dinocysts), broad categories of other palynomorphs were quantified in terms of relative abundance. In this contribution, we provide an overview of the dinocyst distribution from the Maastrichtian to lowermost Oligocene and Quaternary intervals and illustrate main trends in palynomorph distribution. The uppermost Cretaceous-lowermost Oligocene succession of Site 1172 has a confident biomagnetostratigraphy, enabling us to tie early Paleogene Southern Hemisphere dinocyst events to the geomagnetic polarity timescale for the first time. Dinocyst species from the Maastrichtian to earliest Oligocene at Site 1172 are largely endemic ("Transantarctic Flora") or bipolar; cosmopolitan taxa are present in the background as well. The Maastrichtian-early late Eocene dinocyst assemblages are indicative of shallow-marine to restricted marine, pro-deltaic conditions, closely tied to a massive siliciclastic sequence. By middle late Eocene times (~35.5 Ma), the siliciclastic sequence gave way to a thin glauconitic unit, considered to reflect the deepening of the Tasmanian Gateway. This transition coincides with the most prominent change in dinocyst associations of the Paleogene. The turnover is inferred to reflect a change from marginal marine to more offshore conditions, with increased winnowing and oxidation. Overlying pelagic carbonate ooze of middle early Oligocene and younger age is virtually barren of organic microfossils, although Quaternary assemblages have been recovered. This aspect is taken to reflect average low sedimentation rates and well-oxygenated water masses during most of the Oligocene and Neogene. The few palynologically productive samples from the Oligocene-Quaternary interval have a stronger cosmopolitan to subtropical signature, with warm-water species being common to abundant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Toba lake event, the Australasian microtektite event, and the Cretaceous/Paleogene boundary were analyzed on the basis of foraminifers, carbonate content, trace elements, and spherules (microtektites). The Toba ash event, recovered in Hole 758C, may have had minor influences on the foraminiferal populations. The Australasian tektite event has probably some influence on foraminiferal ecology, because the larger specimens become scarce just above the microtektite layer. Microtektites recovered from Hole 758B closely resemble spherules recovered from several Cretaceous/Paleogene boundary localities in North America. The Cretaceous/Paleogene spherules, however, are usually larger and are completely altered to goyazite in the terrestrial environment and to smectite in a marine environment. The Cretaceous/Paleogene boundary of Hole 752B does not show obvious anomalous trace-element concentrations, and iridium concentrations are below our detection limits. The trace-element pattern is dominated by the alternation of chalk with volcanic ash layers above the Cretaceous/Paleogene boundary.