987 resultados para Birkhoff and Von Neumann ergodic theorems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern computer systems that are in use nowadays are mostly processor-dominant, which means that their memory is treated as a slave element that has one major task – to serve execution units data requirements. This organization is based on the classical Von Neumann's computer model, proposed seven decades ago in the 1950ties. This model suffers from a substantial processor-memory bottleneck, because of the huge disparity between the processor and memory working speeds. In order to solve this problem, in this paper we propose a novel architecture and organization of processors and computers that attempts to provide stronger match between the processing and memory elements in the system. The proposed model utilizes a memory-centric architecture, wherein the execution hardware is added to the memory code blocks, allowing them to perform instructions scheduling and execution, management of data requests and responses, and direct communication with the data memory blocks without using registers. This organization allows concurrent execution of all threads, processes or program segments that fit in the memory at a given time. Therefore, in this paper we describe several possibilities for organizing the proposed memory-centric system with multiple data and logicmemory merged blocks, by utilizing a high-speed interconnection switching network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The questions studied in this thesis are centered around the moment operators of a quantum observable, the latter being represented by a normalized positive operator measure. The moment operators of an observable are physically relevant, in the sense that these operators give, as averages, the moments of the outcome statistics for the measurement of the observable. The main questions under consideration in this work arise from the fact that, unlike a projection valued observable of the von Neumann formulation, a general positive operator measure cannot be characterized by its first moment operator. The possibility of characterizing certain observables by also involving higher moment operators is investigated and utilized in three different cases: a characterization of projection valued measures among all the observables is given, a quantization scheme for unbounded classical variables using translation covariant phase space operator measures is presented, and, finally, a mathematically rigorous description is obtained for the measurements of rotated quadratures and phase space observables via the high amplitude limit in the balanced homodyne and eight-port homodyne detectors, respectively. In addition, the structure of the covariant phase space operator measures, which is essential for the above quantization, is analyzed in detail in the context of a (not necessarily unimodular) locally compact group as the phase space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a probabilistic approach to the problem of assigning k indivisible identical objects to a set of agents with single-peaked preferences. Using the ordinal extension of preferences, we characterize the class of uniform probabilistic rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in this characterization no-envy cannot be replaced by anonymity. When agents are strictly risk averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of assigning k identical objects to a problem of allocating the amount k of an infinitely divisible commodity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reconsider the problem of aggregating individual preference orderings into a single social ordering when alternatives are lotteries and individual preferences are of the von Neumann-Morgenstern type. Relative egalitarianism ranks alternatives by applying the leximin ordering to the distributions of (0-1) normalized utilities they generate. We propose an axiomatic characterization of this aggregation rule and discuss related criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I analyze two inequalities on entropy and information, one due to von Neumann and a recent one to Schiffer, and show that the relevant quantities in these inequalities are related by special doubly stochastic matrices (DSM). I then use generalization of the first inequality to prove algebraically a generalization of Schiffer's inequality to arbitrary DSM. I also give a second interpretation to the latter inequality, determine its domain of applicability, and illustrate it by using Zeeman splitting. This example shows that symmetric (degenerate) systems have less entropy than the corresponding split systems, if compared at the same average energy. This seemingly counter-intuitive result is explained thermodynamically. © 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technologies are rapidly developing, but some of them present in the computers, as for instance their processing capacity, are reaching their physical limits. It is up to quantum computation offer solutions to these limitations and issues that may arise. In the field of information security, encryption is of paramount importance, being then the development of quantum methods instead of the classics, given the computational power offered by quantum computing. In the quantum world, the physical states are interrelated, thus occurring phenomenon called entanglement. This study presents both a theoretical essay on the merits of quantum mechanics, computing, information, cryptography and quantum entropy, and some simulations, implementing in C language the effects of entropy of entanglement of photons in a data transmission, using Von Neumann entropy and Tsallis entropy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct all self-adjoint Schrodinger and Dirac operators (Hamiltonians) with both the pure Aharonov-Bohm (AB) field and the so-called magnetic-solenoid field (a collinear superposition of the AB field and a constant magnetic field). We perform a spectral analysis for these operators, which includes finding spectra and spectral decompositions, or inversion formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow, respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous paper, we connected the phenomenological noncommutative inflation of Alexander, Brandenberger and Magueijo [ Phys. Rev. D 67 081301 (2003)] and Koh and Brandenberger [ J. Cosmol. Astropart Phys. 2007 21 ()] with the formal representation theory of groups and algebras and analyzed minimal conditions that the deformed dispersion relation should satisfy in order to lead to a successful inflation. In that paper, we showed that elementary tools of algebra allow a group-like procedure in which even Hopf algebras (roughly the symmetries of noncommutative spaces) could lead to the equation of state of inflationary radiation. Nevertheless, in this paper, we show that there exists a conceptual problem with the kind of representation that leads to the fundamental equations of the model. The problem comes from an incompatibility between one of the minimal conditions for successful inflation (the momentum of individual photons being bounded from above) and the Fock-space structure of the representation which leads to the fundamental inflationary equations of state. We show that the Fock structure, although mathematically allowed, would lead to problems with the overall consistency of physics, like leading to a problematic scattering theory, for example. We suggest replacing the Fock space by one of two possible structures that we propose. One of them relates to the general theory of Hopf algebras (here explained at an elementary level) while the other is based on a representation theorem of von Neumann algebras (a generalization of the Clebsch-Gordan coefficients), a proposal already suggested by us to take into account interactions in the inflationary equation of state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance as a power law. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range, (ii) purely algebraically. In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks also the conformal symmetry. This can be detected via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we propose an exact efficient simulation algorithm for the generalized von Mises circular distribution of order two. It is an acceptance-rejection algorithm with a piecewise linear envelope based on the local extrema and the inflexion points of the generalized von Mises density of order two. We show that these points can be obtained from the roots of polynomials and degrees four and eight, which can be easily obtained by the methods of Ferrari and Weierstrass. A comparative study with the von Neumann acceptance-rejection, with the ratio-of-uniforms and with a Markov chain Monte Carlo algorithms shows that this new method is generally the most efficient.