802 resultados para Bird Day
Resumo:
Wild bird feeding is popular in domestic gardens across the world. Nevertheless, there is surprisingly little empirical information on certain aspects of the activity and no year-round quantitative records of the amounts and nature of the different foods provided in individual gardens. We sought to characterise garden bird feeding in a large UK urban area in two ways. First, we conducted face-to-face questionnaires with a representative cross-section of residents. Just over half fed birds, the majority doing so year round and at least weekly. Second, a two-year study recorded all foodstuffs put out by households on every provisioning occasion. A median of 628 kcal/garden/day was given. Provisioning level was not significantly influenced by weather or season. Comparisons between the data sets revealed significantly less frequent feeding amongst these ‘keen’ feeders than the face-to-face questionnaire respondents, suggesting that one-off questionnaires may overestimate provisioning frequency. Assuming 100% uptake, the median provisioning level equates to sufficient supplementary resources across the UK to support 196 million individuals of a hypothetical average garden-feeding bird species (based on 10 common UK garden-feeding birds’ energy requirements). Taking the lowest provisioning level recorded (101 kcal/day) as a conservative measure, 31 million of these average individuals could theoretically be supported.
Resumo:
In this paper, we report on range use patterns of birds in relation to tropical forest fragmentation. Between 2003 and 2005, three understorey passerine species were radio-tracked in five locations of a fragmented and in two locations of a contiguous forest landscape on the Atlantic Plateau of Sao Paulo in south-eastern Brazil. Standardized ten-day home ranges of 55 individuals were used to determine influences of landscape pattern, season, species, sex and age. In addition, total observed home ranges of 76 individuals were reported as minimum measures of spatial requirements of the species. Further, seasonal home ranges of recaptured individuals were compared to examine site fidelity. Chiroxiphia caudata, but not Pyriglena leucoptera or Sclerurus scansor, used home ranges more than twice as large in the fragmented versus contiguous forest. Home range sizes of C. caudata differed in relation to sex, age, breeding status and season. Seasonal home ranges greatly overlapped in both C. caudata and in S. scansor. Our results suggest that one response by some forest bird species to habitat fragmentation entails enlarging their home ranges to include several habitat fragments, whereas more habitat-sensitive species remain restricted to larger forest patches.
Resumo:
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south-eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We are living in a day of change. Environmental awareness is a part of our everyday life in a way unprecedented in history. The courts, in their infinite wisdom, have initiated the joint and several liability (deep pocket) rules that make everyone at risk in almost all situations. Bird management programs, by their very nature, are extremely sensitive. Any project, if not evaluated, planned, carried out, and documented properly can result in adverse regulatory agency action, bad publicity, and even fines or lawsuits. Proper photographic documentation can play a vital part in helping to provide the necessary records to help prevent problems and/or defend yourself in case of lawsuit or regulatory action. In the preparation of this paper, we surveyed state pesticide lead agencies, state Department of Conservation (Fish and Wildlife) agencies, some U.S. Fish and Wildlife Law Enforcement personnel, and several individuals to get their reaction to and their comments about this concept of supplemental recordkeeping. Of those responding, a majority thought the concept of supplemental photographic recordkeeping would be an asset to individuals and organi¬zations conducting bird management projects.
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.
Resumo:
The remarks that I have prepared deal with direct contacts selling pest and bird control programs. I am going to limit my remarks to what I feel are the more important aspects of selling Bird Control. I think it is safe to say that one of the most difficult aspects of selling for most sales personnel is prospecting, that is, finding accounts to call on. Our sales personnel have to more or less come up with their own leads. They have to find out who to contact once they get there. I have found that the best prospect most of us have for selling Bird Control accounts are our present pest control accounts. Generally speaking, we try to main¬tain contact with our applicators in the field, who are in these accounts every day, asking them if there are any of their accounts that are having bird control problems. Another method of finding potential accounts, is driving around looking. It is more difficult to drive around and look for rat and/or roach problems, but generally speaking if a building or some type of business has a bird problem, it is fairly easy to locate. Another thing we can do is call on specific accounts. There are generally cer¬tain accounts that just by the manufacturing process do attract birds, for example: food plants, mills, beet plants, grain elevators, food processors, and so on. Other type operations which lend themselves to bird problems are industrial plants because of the super-structure (physical plant) that they have. Sub-stations and power plants are very attractive to birds. Some other situations that should be checked for bird problems are lumber yards and contractors' storage buildings. After deciding on a contact we get into what I call my basic four. There are four basic things that I try to impress upon our personnel to keep in mind when they go in to make a contact. The first one is the interview or actually making the contact so that you get an opportunity to have the interview, either calling for an appointment or making a "cold" call. The second one is closing for the survey. The third one is making the survey and preparing a proposal. The fourth and last one is the proposal presentation and closing of the sale. An additional item which would make a basic five is after you make the sale don't forget to follow up on the sale.
Resumo:
There is now an extensive literature on extinction debt following deforestation. However, the potential for species credit in landscapes that have experienced a change from decreasing to expanding forest cover has received little attention. Both delayed responses should depend on current landscape forest cover and on species life-history traits, such as longevity, as short-lived species are likely to respond faster than long-lived species. We evaluated the effects of historical and present-day local forest cover on two vertebrate groups with different longevities understorey birds and non-flying small mammals - in forest patches at three Atlantic Forest landscapes. Our work investigated how the probability of extinction debt and species credit varies (i) amongst landscapes with different proportions of forest cover and distinct trajectories of forest cover change, and (ii) between taxa with different life spans. Our results suggest that the existence of extinction debt and species credit, as well as the potential for their future payment and/or receipt, is not only related to forest cover trajectory but also to the amount of remaining forest cover at the landscape scale. Moreover, differences in bird and small mammal life spans seem to be insufficient to affect differently their probability of showing time-delayed responses to landscape change. Synthesis and applications. Our work highlights the need for considering not only the trajectory of deforestation/regeneration but also the amount of forest cover at landscape scale when investigating time-delayed responses to landscape change. As many landscapes are experiencing a change from decreasing to expanding forest cover, understanding the association of extinction and immigration processes, as well as their interactions with the landscape dynamic, is a key factor to plan conservation and restoration actions in human-altered landscapes.
Resumo:
Pelagic distribution of birds at the Weddell Sea. The essay contains the notes taken of the observation of birds at the Weddell Sea (24 species). The observations were made on two expeditions in the southern summer of 1955/56 and 1959/60 on board the Argentine icebreaker "General San Martin". After an introduction dealing with the Weddell Sea and the methods of research the species are represented together with the territory of observation and supplementary annotations. Two tables give a survey of the birds seen on each day of the expedition and in the territories they sailed through.
Resumo:
Notes from Henrik de Nie: The project started as a phenological study in cooperation with the (Dutch) meteorological institute (KNMI) to register the time of arrival of Fitis and Tjiftaf. During 1951 to 1969 he went every day to the wood (except 1966, in this year his wife died). Thereafter he went no more daily, but because he knew the wood very well and he was free to choice the day on which he did a survey, therefore he choose days with relatively good weather. He did not observe very common bird species, maybe because they are dependent on nest boxes and he did not want to be dependent on the management of the nest box-people (in fact I forgot precisely his arguments, and now I cannot ask him this): Common Starling; Eurasian Tree Sparrow (not common); Great Tit; Eurasian Blue Tit Pieter mentioned 14 species that scored many zero values or only one observation: Stock Dove; Common Cuckoo; Lesser Spotted Woodpecker; Eurasian Golden Oriole; Eurasian Nuthatch; Short-toed Treecreeper; Common Nightingale; Marsh Warbler; Lesser Whitethroat; Goldcrest; Common Firecrest (after 1970 he had difficulties in hearing these two species); Spotted Flycatcher; Eurasian Bullfinch; Black Woodpecker He also mentioned species that he found much fewer as: European Greenfinch; European Pied Flycatcher; Long-eared Owl; Red Crossbill; Sedge Warbler; Icterine Warbler; Eurasian Woodcock; Eurasian Siskin; European Green Woodpecker; Great Spotted Woodpecker; Eurasian Hobby; Western Barn Owl; Woodlark; Common Wood Pigeon; Little Owl; European Crested Tit; Hawfinch. But for these species I think that observations are strongly dependent on the number of visits to the wood. Also here, many zeros and few 1 x during the whole series of visits.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication contains measurements from the Continuous Surface Sampling System [CSSS] made during one campaign of the Tara Oceans Expedition. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a Sea-Bird TSG temperature and conductivity sensor. System maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.