918 resultados para Biosensors chip-sized
Marine biotoxins in the Catalan littoral: could biosensors be integrated into monitoring programmes?
Resumo:
Aquest article descriu els sensors enzimàtics i immunosensors electroquímics que s’han desenvolupat als nostres grups per a la detecció de la biotoxina marina àcid okadaic (OA), i discuteix la possibilitat d’integrar-los en programes de seguiment. Els sensors enzimàtics per a OA que es presenten es basen en la inhibició de la proteïna fosfatasa (PP2A) per aquesta toxina i la mesura electroquímica de l’activitat enzimàtica mitjançant l’ús de substrats enzimàtics apropiats, electroquímicament actius després de la seva desfosforació per l’enzim. Els immunosensors electroquímics descrits en aquest article es basen en un enzimoimmunoassaig sobre fase sòlida competitiu indirecte (ciELISA), amb fosfatasa alcalina (ALP) o peroxidasa (HRP) com a marcatges, i un sistema de reciclatge enzimàtic amb diaforasa (DI). Els biosensors presentats aquí s’han aplicat a l’anàlisi de dinoflagel·lats, musclos i ostres. Les validacions preliminars amb assaigs colorimètrics i LC-MS/MS han demostrat la possibilitat d’utilitzar les bioeines desenvolupades per al cribratge preliminar de biotoxines marines en mostres de camp o de cultiu, que ofereixen informació complementària a la cromatografia. En conclusió, tot i que encara cal optimitzar alguns paràmetres experimentals, la integració dels biosensors a programes de seguiment és viable i podria proporcionar avantatges respecte a altres tècniques analítiques pel que fa al temps d’anàlisi, la simplicitat, la selectivitat, la sensibilitat, el fet de poder ser d’un sol ús i l’efectivitat de cost. This article describes the electrochemical enzyme sensors and immunosensors that have been developed by our groups for the detection of marine biotoxin okadaic acid (OA), and discusses the possibility of integrating them into monitoring programmes. The enzyme sensors for OA reported herein are based on the inhibition of immobilised protein phosphatase 2A (PP2A) by this toxin and the electrochemical measurement of the enzyme activity through the use of appropriate enzyme substrates, which are electrochemically active after dephosphorylation by the enzyme. The electrochemical immunosensors described in this article are based on a competitive indirect Enzyme- Linked ImmunoSorbent Assay (ciELISA), using alkaline phosphatase (ALP) or horseradish peroxidase (HRP) as labels, and an enzymatic recycling system with diaphorase (DI). The biosensors presented herein have been applied to the analysis of dinoflagellates, mussels and oysters. Preliminary validations with colorimetric assays and LC-MS/MS have demonstrated the possibility of using the developed biotools for the preliminary screening of marine biotoxins in field or cultured samples, offering complementary information to chromatography. In conclusion, although optimisation of some experimental parameters is still required, the integration of biosensors into monitoring programmes is viable and may provide advantages over other analytical techniques in terms of analysis time, simplicity, selectivity, sensitivity, disposability of electrodes and cost effectiveness.
Resumo:
SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.
Resumo:
Aquesta memòria descriu el procés de desenvolupament d'un projecte que consisteix en un conjunt de hardware, “PSoC” (Programmable System on Chip), i un software, C#, mitjançant els quals s'automatitza la gestió de comandes a les taules d'un restaurant. A cada taula trobem un aparell anomenat “WaiterClient”, a través del qual els clients sol·liciten l'atenció d'un cambrer. Aquest hardware té una pantalla on es mostrarà informació i un conjunt de polsadors per demanar. Per una altra banda, trobem un altre aparell, “WaiterServidor”, encarregat de rebre els senyals enviats per wireless des dels “WaiterClients” que hi ha a cada taula. Un cop rebudes, les transmet a un ordinador central per cable sèrie RS-232.
Resumo:
Aquesta memòria descriu el procés de desenvolupament del projecte de fi de carrera “Sistema de monitorització vital portable amb System on Chip i interfície SD Card”. Aquest es tracta d’un dispositiu de dimensions reduïdes, baix consum i portable amb capacitat d’enregistrar els biopotencials cardíacs dins d’una targeta de memòria flash SD Card. En temps real es mostra una representació d’aquests biopotencials mitjançant una pantalla LCD gràfica. El projecte, a més, inclou el desenvolupament d’un software de visualització per PC que permet l’anàlisi posterior més detallada dels registres emmagatzemats a la targeta SD Card.
Resumo:
This intervention aims to: - Increase fruit and vegetable intake - Increase activity levelsInitiate weight loss - Reduce health risks - Provide effective weight loss tools - Increase participant behaviour change skills
Resumo:
A luminescent bacterial biosensor was used to quantify bioavailable arsenic in artificial groundwater. Its light production above the background emission was proportional to the arsenite concentration in the toxicologically relevant range of 0 to 0.5 mu M. Effects of the inorganic solutes phosphate, Fe(II) and silicate on the biosensor signal were studied. Phosphate at a concentration of 0.25 g L-1 phosphate slightly stimulated the light emission, but much less than toxicologically relevant concentrations of the much stronger inducer arsenite. No effect of phosphate was oberved in the presence of arsenite. Freshly prepared sodium silicate solution at a concentration of 10 g L-1 Si reduced the arsenite-induced light production by roughly 37%, which can be explained by transient polymerization leading to sequestration of some arsenic. After three days of incubation, silicate did not have this effect anymore, probably because depolymerization occurred. In the presence of 0.4 g L-1 Fe(II), the arsenite-induced light emission was reduced by up to 90%, probably due to iron oxidation followed by arsenite adsorption on the less soluble Fe(III) possibly along with some oxidation to the stronger adsorbing As(V). Addition of 100 mu M EDTA was capable of releasing all arsenic from the precipitate and to transform it into the biologically measurable, dissolved state. The biosensor also proved valuable for monitoring the effectiveness of an arsenic removal procedure based on water filtration through a mixture of sand and iron granules.
Resumo:
Abstract: Traditionally, pollution risk assessment is based on the measurement of a pollutant's total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensorreporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.
Resumo:
Parvovirus B19 (B-19) may cause chronic anaemia in immunosuppressed patients, including those infected with human immunodeficiency virus (HIV). We studied single serum samples from 261 consecutive HIV-infected patients using an enzyme immunoassay to detect IgG antibodies to B-19. The seroprevalence of B-19-IgG was 62.8%. The differences in seroprevalence across gender, age, educational categories, year of collection of the serum samples, clinical and antiretroviral therapy characteristics, CD4+ count, CD4+ and CD8+ percentage and CD4+/CD8+ ratios were neither substantial nor statistically significant. There was a non-significant, inverse association between B-19 seropositivity and plasma HIV load and haemoglobin level. Our results indicated that 37.1% of patients might be susceptible to B-19 infection and remained at risk for being infected, mainly during epidemic periods. As B-19 infection can be treated with immune globulin preparations, it may be included in the diagnostic approach toward chronic anaemia in HIV-infected patients.
Resumo:
Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.
Resumo:
The lanthanide binuclear helicate [Eu(2)(L(C2(CO(2)H)))(3)] is coupled to avidin to yield a luminescent bioconjugate EuB1 (Q = 9.3%, tau((5)D(0)) = 2.17 ms). MALDI/TOF mass spectrometry confirms the covalent binding of the Eu chelate and UV-visible spectroscopy allows one to determine a luminophore/protein ratio equal to 3.2. Bio-affinity assays involving the recognition of a mucin-like protein expressed on human breast cancer MCF-7 cells by a biotinylated monoclonal antibody 5D10 to which EuB1 is attached via avidin-biotin coupling demonstrate that (i) avidin activity is little affected by the coupling reaction and (ii) detection limits obtained by time-resolved (TR) luminescence with EuB1 and a commercial Eu-avidin conjugate are one order of magnitude lower than those of an organic conjugate (FITC-streptavidin). In the second part of the paper, conditions for growing MCF-7 cells in 100-200 microm wide microchannels engraved in PDMS are established; we demonstrate that EuB1 can be applied as effectively on this lab-on-a-chip device for the detection of tumour-associated antigens as on MCF-7 cells grown in normal culture vials. In order to exploit the versatility of the ligand used for self-assembling [Ln(2)(L(C2(CO(2)H)))(3)] helicates, which sensitizes the luminescence of both Eu(III) and Tb(III) ions, a dual on-chip assay is proposed in which estrogen receptors (ERs) and human epidermal growth factor receptors (Her2/neu) can be simultaneously detected on human breast cancer tissue sections. The Ln helicates are coupled to two secondary antibodies: ERs are visualized by red-emitting EuB4 using goat anti-mouse IgG and Her2/neu receptors by green-emitting TbB5 using goat anti-rabbit IgG. The fact that the assay is more than 6 times faster and requires 5 times less reactants than conventional immunohistochemical assays provides essential advantages over conventional immunohistochemistry for future clinical biomarker detection.
Resumo:
Understanding the transmission dynamics of infectious diseases is important to allow for improvements of control measures. To investigate the spatiotemporal pattern of an epidemic dengue occurred at a medium-sized city in the Northeast Region of Brazil in 2009, we conducted an ecological study of the notified dengue cases georeferenced according to epidemiological week (EW) and home address. Kernel density estimation and space-time interaction were analysed using the Knox method. The evolution of the epidemic was analysed using an animated projection technique. The dengue incidence was 6.918.7/100,000 inhabitants; the peak of the epidemic occurred from 8 February-1 March, EWs 6-9 (828.7/100,000 inhabitants). There were cases throughout the city and was identified space-time interaction. Three epicenters were responsible for spreading the disease in an expansion and relocation diffusion pattern. If the health services could detect in real time the epicenters and apply nimbly control measures, may possibly reduce the magnitude of dengue epidemics.
Resumo:
ABSTRACT The interorganizational cooperation, through joint efforts with various actors, allows the high-tech companies to complement resources, especially in R&D projects. Collaborative projects have been identified in many studies as an important strategy to produce complex products and services in uncertain and competitive environments. Thus, this research aims at deepening the understanding of how the development dynamics of a collaborative R&D project in an industry of high technology occur. In order to achieve the proposed objective, the R&D project of the first microcontroller in the Brazilian semiconductor industry was defined as the object of analysis. The empirical choice is justified by the uniqueness of the case, besides bringing a diversity of actors and a level of complementarity of resources that were significant to the success of the project. Given the motivation to know who the actors were and what the main forms of interorganizational coordination were used in this project, interviews were carried out and a questionnaire was also made, besides other documents related to the project. The results presented show a network of nine actors and their roles in the interorganizational collaboration process, as well as the forms of social and temporal overlapping, used in the coordination of collective efforts. Focusing on the mechanisms of temporal and social integration highlighted throughout the study, the inclusion of R&D projects in the typology for interorganizational projects is proposed in this paper, which was also proposed by Jones and Lichtenstein (2008).
Resumo:
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Resumo:
Endothelium-derived nitric oxide (EDNO) plays a pivotal role in regulating pulmonary circulation. To determine whether there is a heterogeneity in EDNO-mediated responses of different sized pulmonary vessels, we studied small and large isolated pulmonary arteries of newborn lambs (diameter, 0.4-0.7 and 1.5-2.5 mm, respectively). The isometric tension of vessel rings were recorded while suspended in organ chambers filled with modified Krebs-Ringer bicarbonate solution (95% O2-5% CO2, 37 degrees C). In vessels preconstricted with norepinephrine, acetylcholine and bradykinin induced a greater relaxation of small pulmonary arteries than of large pulmonary arteries. Acetylcholine, bradykinin, and nitric oxide also induced a greater increase in cGMP content in small arteries than in large ones. The responses to acetylcholine and bradykinin were endothelium-dependent and inhibited by nitro-L-arginine, an inhibitor of nitric oxide synthase. In vessels without endothelium, the response to nitric oxide was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase. The activity of soluble guanylyl cyclase of small arteries was greater than that of large arteries under basal conditions and after stimulation with S-nitroso-N-acetylpenicillamine, a nitric oxide donor. These results demonstrate that heterogeneity exists in EDNO-mediated relaxation of small and large pulmonary arteries in newborn lambs. A difference in the soluble guanylate cyclase activity of vascular smooth muscle may have contributed to this phenomenon.
Resumo:
Neurofilaments are typical structures of the neuronal cytoskeleton and participate in the formation and stabilization of the axonal and dendritic architecture. In this study, we have characterized a murine monoclonal antibody, FNP7, that is directed against the medium-sized neurofilament subunit NF-M. This antibody identifies a subset of neurons in the cerebral cortex of various species including human and in organotypic cultures of rat cortex. In the neocortex of all species examined, the antibody labels pyramidal cells in layers III, V, and VI, with a distinctive laminar distribution between architectonic boundaries. In comparison with other antibodies directed against NF-M, the FNP7 antibody identifies on blots two forms of NF-M that appear relatively late during development, at the time when dynamic growth of processes changes to the stabilization of the formed processes. Dephosphorylation with alkaline phosphatase unmasks the site, making it detectable for the FNP7 antibody. The late appearance suggests that the site is present during early development in phosphorylated form and with increasing maturation becomes dephosphorylated, mainly in dendrites. This event may relate to changes in cytoskeleton stability in a late phase of dendritic maturation. Furthermore, mainly corticofugal projections and only few callosal axons are stained, suggesting a differential phosphorylation in a subset of axons. The antibody provides a useful marker to study subsets of pyramidal cells in vivo, in vitro, and under experimental conditions.