970 resultados para Biomechanics.
Resumo:
In this paper, a novel framework for visual tracking of human body parts is introduced. The approach presented demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera by using a limb-tracking system based on a 2-D articulated model and a double-tracking strategy. Its key contribution is that the 2-D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints that are linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.
Resumo:
Vertebroplasty is a minimally invasive surgical procedure, which requires efficacious percutaneous cement delivery via a cannulated needle to restore the strength and stiffness in osteoporotic vertebral bodies. Cement viscosity is understood to influence the injectability, cohesion and cement retention within the vertebral body. Altering the liquid to powder ratio modifies the viscosity of bone cement; however, the cement viscosity-response association between cement fill and augmentation of strength and stiffness is unknown. The aim of this study was to determine the relationship between viscosity, cement fill and the potential augmentation of strength and stiffness in an open pore foam structure that was representative of osteoporotic cancellous bone using an in vitro prophylactic vertebroplasty model. The results showed a strong linear correlation between compressive strength and stiffness augmentation with percentage cement fill, the extent of which was strongly dependent on the cement viscosity. Significant forces were required to ensure maximum delivery of the high viscosity cement using a proprietary screw-driven cement delivery technology. These forces could potentially exceed the normal human physical limit. Similar trends were observed when comparing the results from this study and previously reported cadaveric and animal based in vitro models.
Resumo:
PURPOSE OF REVIEW:
Highlights recent studies relating to the impact of corneal structure and biomechanical properties on glaucoma evaluation and management.
RECENT FINDINGS:
Central corneal thickness has been shown to play a role in the interpretation of intraocular pressure. Central corneal thickness has also been suggested as a glaucoma risk factor. The potential role of other corneal factors, such as stromal makeup, in the accurate measurement of intraocular pressure and the assessment of glaucoma risk remains to be determined.
SUMMARY:
Improved understanding of central corneal thickness and corneal biomechanical properties may someday lead to a better understanding of glaucoma risk and its assessment.
Resumo:
PURPOSE: Low corneal hysteresis is associated with longer axial length in Chinese secondary school children. The authors sought to explore this association in primary school children. METHODS: LogMAR presenting visual acuity, cycloplegic refractive error, ocular biometry, central corneal thickness (CCT), and corneal hysteresis (CH) was assessed for children in grades 1 to 3 at an academically competitive urban school in Shantou, China. RESULTS: Among 872 eligible children (mean age, 8.6 ± 2.1 years), 651 (74.7%) completed the examination. Among 1299 examined eyes, 111 (8.5%) had uncorrected vision ≤6/12. Mean spherical equivalent refractive error for all eyes was +0.26 ± 1.41 D, and axial length (AL) was 22.7 ± 0.90 mm. CH for the lowest (mean AL, 21.7 ± 0.39 mm), two middle (mean AL, 22.4 ± 0.15 and 22.9 ± 0.15 mm), and highest quartiles (mean AL, 23.7 ± 0.74 mm) of AL were 10.6 ± 2.1 mm Hg, 10.4 ± 2.1 mm Hg, 10.3 ± 2.3 mm Hg, and 10.2 ± 2.3 mm Hg respectively (age- and gender-adjusted Pearson's correlation coefficient r = -0.052; P = 0.001). In generalized estimating equation models adjusting for age, gender, and CCT, lower CH was significantly associated with longer AL (P < 0.001) and more myopic refractive error (P = 0.001). CONCLUSIONS: CH measurement is practical in young children because this is when myopia undergoes its most rapid progression. Prospective follow-up of this cohort at high risk for myopia is under way to determine whether low CH is predictive, or a consequence, of long AL.
Resumo:
This resource is for Health Scientist
Resumo:
Direct measurement of strain field in a mechanically loaded Norway spruce branch-stem junction was performed by means of electronic speckle pattern analysis. Results were compared with strain distribution in a polyester cast of identical shape as the branch-stem junction, and a simplified polyester model consisting of two half-cylinders. Compared to polyester models, the branch-stem junction was characterised by a very homogeneous distribution of strain, which can be interpreted as a homogeneous distribution of stress in terms of fraction of material strength. This optimised transfer of mechanical load from the branch to the stem is achieved by a combination of naturally optimised shape with, additionally, optimised mechanical wood properties in the junction area.
Resumo:
Pre-term birth is the leading cause of perinatal and neonatal mortality, 40% of which are attributed to the pre-term premature rupture of amnion. Rupture of amnion is thought to be associated with a corresponding decrease in the extracellular collagen content and/or increase in collagenase activity. However, there is very little information concerning the detailed organisation of fibrillar collagen in amnion and how this might influence rupture. Here we identify a loss of lattice like arrangement in collagen organisation from areas near to the rupture site, and present a 9% increase in fibril spacing and a 50% decrease in fibrillar organisation using quantitative measurements gained by transmission electron microscopy and the novel application of synchrotron X-ray diffraction. These data provide an accurate insight into the biomechanical process of amnion rupture and highlight X-ray diffraction as a new and powerful tool in our understanding of this process.
Resumo:
The application of engineering knowledge in dentistry has helped the understanding of biomechanics aspects related to osseointegrated implants. Several techniques have been used to evaluate the biomechanical load oil implants comprising the use of photoelastic stress analysis, finite element stress analysis, and strain-gauge analysis. Therefore, the purpose of this Study was to describe engineering methods used in dentistry to evaluate the biomechanical behavior of osseointegrated implants. Photoelasticity provides good qualitative information oil the overall location and concentration of stresses but produces limited quantitative information. The method serves as ail important tool for determining the critical stress points in a material and is often used for determining stress concentration factors in irregular geometries. The application of strain-gauge method oil dental implants is based oil the use of electrical resistance strain gauges and its associated equipment and provides both in vitro and vivo measurements strains under static and dynamic loads. However, strain-gauge method provides only the data regarding strain at the gauge. Finite element analysis can Simulate stress using a computer-created model to calculate stress, strain, and displacement. Such analysis has the advantage of allowing several conditions to be changed easily and allows measurement of stress distribution around implants at optional points that are difficult to examine clinically All the 3 methodologies call be useful to evaluate biomechanical implant behavior close to the clinical condition but the researcher should have enough knowledge in model fabrication (experimental delineation) and results analysis.
Resumo:
Introduction: Excessive consumption of sugar-sweetened beverage is positively related to overweight. Despite the epidemic of childhood obesity, body mass can have a positive or negative effect on bone health. Material and methods: Wistar rats 8 weeks olds were randomly assigned to consume water (Control group, n = 10), sucrose 30% (HS group, n = 10) and water + sucrose 30% (WHS group, n = 14) for 8 weeks. All animals received standard laboratory chow ad libitum. Femur measurements included microhardness, bone mineral density (BMD) by DXA, mechanical compression test and microcomputed tomography (microCT) analysis. Results: We observed significant difference in final body weight in HS and WHS groups, significant increase in triacylglycerol/fructosamine in HS and WHS groups, significantly high BMD in WHS group, increased periosteal/endosteal cortical microhardness in WHS group. Compared with control, microCT parameters evidenced lower amount of connected trabecular bone, decreased bone volume, lower trabecular number with high trabecular separation in distal epiphysis in WHS animals. Conclusion: High-sucrose consumption causes obesity induced by a liquid diet with negative effects on cancellous bone.
Resumo:
Because the biomechanical behavior of dental implants is different from that of natural tooth, clinical problems may occur. The mechanism of stress distribution and load transfer to the implant/bone interface is a critical issue affecting the success rate of implants. Therefore, the aim of this study was to conduct a brief literature review of the available stress analysis methods to study implant-supported prosthesis loading and to discuss their contributions in the biomechanical evaluation of oral rehabilitation with implants. Several studies have used experimental, analytical, and computational models by means of finite element models (FEM), photoelasticity, strain gauges and associations of these methods to evaluate the biomechanical behavior of dental implants. The FEM has been used to evaluate new components, configurations, materials, and shapes of implants. The greatest advantage of the photoelastic method is the ability to visualize the stresses in complex structures, such as oral structures, and to observe the stress patterns in the whole model, allowing the researcher to localize and quantify the stress magnitude. Strain gauges can be used to assess in vivo and in vitro stress in prostheses, implants, and teeth. Some authors use the strain gauge technique with photoelasticity or FEM techniques. These methodologies can be widely applied in dentistry, mainly in the research field. Therefore, they can guide further research and clinical studies by predicting some disadvantages and streamlining clinical time.
Resumo:
BALDON, R. D. M., D. F. M. LOBATO, L. P. CARVALHO, P. Y. L. WUN, P. R. P. SANTIAGO, and F. V. SERRAO. Effect of Functional Stabilization Training on Lower Limb Biomechanics in Women. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 135-145, 2012. Purpose: This study aimed to verify the effects of functional stabilization training on lower limb kinematics, functional performance, and eccentric hip and knee torques. Methods: Twenty-eight women were divided into a training group (TG; n = 14), which carried out the functional stabilization training during 8 wk, and a control group (CG; n = 14), which carried out no physical training. The kinematic assessment of the lower limb was performed during a single-leg squat, and the functional performance was evaluated by way of the single-leg triple hop and the timed 6-m single-leg hop tests. The eccentric hip abductor, adductor, lateral rotator, medial rotator, and the knee flexor and extensor torques were measured using an isokinetic dynamometer. Results: After 8 wk, the TG significantly reduced the values for knee abduction (from -6.86 degrees to 1.49 degrees), pelvis depression (from -10.21 degrees to -7.86 degrees) and femur adduction (from 7.08 degrees to 5.19 degrees) as well as increasing the excursion of femur lateral rotation (from -0.55 degrees to -3.67 degrees). Similarly, the TG significantly increased the values of single-leg triple hop (from 3.52 to 3.92 m) and significantly decreased the values of timed 6-m single-leg hop tests (from 2.43 to 2.14 s). Finally, the TG significantly increased the eccentric hip abductor (from 1.31 to 1.45 N center dot m center dot kg(-1)), hip lateral rotator (from 0.75 to 0.91 N center dot m center dot kg(-1)), hip medial rotator (from 1.45 to 1.66 N center dot m center dot kg(-1)), knee flexor (from 1.43 to 1.55 N center dot m center dot kg(-1)), and knee extensor (from 3.46 to 4.40 N center dot m center dot kg(-1)) torques. Conclusions: Strengthening of the hip abductor and lateral rotator muscles associated with functional training improves dynamic lower limb alignment and increases the strength and functional performance.