986 resultados para Biomass concentration
Resumo:
The primary requirements for high-biomass-concentration microalgal cultivation include a photon source and distribution, efficient gas exchange and suitable growth medium composition. However, for mass outdoor production of microalgae, growth medium composition is a major controlling factor as most of the other factors such as light source and distribution are virtually uncontrollable. This work utilises an elemental balance approach between growth medium and biomass compositions to obtain high-density microalgal cultures in an open system. F medium, commonly used for the cultivation of marine microalgae such as Tetraselmis suecica was redesigned on the basis of increasing the biomass capacity of its major deficient components to support high biomass concentrations (τ ∼ 5.0 % for N, S and τ ∼ 10 % P), and the entire formulation was dissolved in 0.2 um sterile filtered natural seawater. Results show that the new medium (F') displayed a maximum biomass concentration and total lipid concentration of 1.29 g L 1 and 108.7 mg L 1 respectively, which represents over 2-fold increase compared to that of the F medium. Keeping all variables constant except growth medium, and using F medium as the base case of 1 medium cost (MC) unit mg -1 lipid, the F' medium yielded lipid at a cost of only 0.35 MC unit mg -1 lipids. These results show that greater amounts of biomass and lipids can be obtained more economically with minimal extra effort simply by using an optimised growth medium.
Resumo:
Dewatering of microalgal culture is a major bottleneck towards the industrial-scale processing of microalgae for bio-diesel production. The dilute nature of harvested microalgal cultures poses a huge operation cost to dewater; thereby rendering microalgae-based fuels less economically attractive. This study explores the influence of microalgal growth phases and intercellular interactions during cultivation on dewatering efficiency of microalgae cultures. Experimental results show that microalgal cultures harvested during a low growth rate phase (LGRP) of 0.03 d-1 allowed a higher rate of settling than those harvested during a high growth rate phase (HGRP) of 0.11 d-1, even though the latter displayed a higher average differential biomass concentration of 0.2 g L-1 d-1. Zeta potential profile during the cultivation process showed a maximum electronegative value of -43.2 ± 0.7 mV during the HGRP which declined to stabilization at -34.5 ± 0.4 mV in the LGRP. The lower settling rate observed for HGRP microalgae is hence attributed to the high stability of the microalgal cells which electrostatically repel each other during this growth phase. Tangential flow filtration of 20 L HGRP culture concentrated 23 times by consuming 0.51 kWh/m3 of supernatant removed whilst 0.38 kWh/m3 was consumed to concentrate 20 L of LGRP by 48 times.
Resumo:
Deterministic models have been widely used to predict water quality in distribution systems, but their calibration requires extensive and accurate data sets for numerous parameters. In this study, alternative data-driven modeling approaches based on artificial neural networks (ANNs) were used to predict temporal variations of two important characteristics of water quality chlorine residual and biomass concentrations. The authors considered three types of ANN algorithms. Of these, the Levenberg-Marquardt algorithm provided the best results in predicting residual chlorine and biomass with error-free and ``noisy'' data. The ANN models developed here can generate water quality scenarios of piped systems in real time to help utilities determine weak points of low chlorine residual and high biomass concentration and select optimum remedial strategies.
Resumo:
O cultivo de microalgas é uma matéria prima para produção de biocombustível e de captura de carbono devido a vantagens como alta produção de biomassa e rápido crescimento quando comparado com outras fontes de energia e não necessitar de terra fértil. O presente trabalho teve como objetivo estudar métodos de concentração da biomassa. A microalga utilizada foi a Isochrysis galbana. Os cultivos tiveram duração de 20 dias e concentração inicial de 7.104 cel/mL no meio de cultivo F2/Guillard. e foram realizados em fotobioreatores de 500 mL, 3 L e 12 L. Os experimentos foram conduzidos em foto-período de 12 h claro/escuro, com temperatura de 27 a 29 C. Ao final dos cultivos, as amostras foram levadas para a sequência de processos de separação. Inicialmente, foram realizados ensaios de microfiltração em membrana com porosidade de 0,45 m em procedimento do tipo dead-end e constatou-se a rápida e intensa formação de camada de fouling. Acrescentou-se uma etapa de separação por floculação preliminar à microfiltração, utilizando-se Al2(SO4)3 como agente floculante. O meio coagulado foi então filtrado e microfiltrado. O estudo combinado das 3 etapas de separação possibilitou 99% de remoção de biomassa.O teor de óleo obtido foi de 22,4%. Portanto, o trabalho apresenta uma configuração de concentração da biomassa Isochrysis galbana visando o processo de produção de biocombustíveis
Resumo:
Growing of fish in cages is currently practiced in Uganda and was first introduced in northern Lake Victoria in 2010. An environment monitoring study was undertaken at Source of the Nile, a private cage fish farm, in Napoleon gulf, northern Lake Victoria. In-situ measurements of key environmental (temperature, dissolved oxygen, pH and conductivity) and biological (algae, zooplankton, macro-benthos) variables were made at three transects: Transect 1- the site with fish cages (WC); transect 2- upstream of the fish cages (USC-control) and Transect 3- downstream of the cages (DSC). Upstream and Downstream sites were located approximately 1.0 km from the fish cages. Environment parameters varied spatially and temporally but were generally within safe ranges for freshwater habitats. Higher concentrations of SRP (0.015-0.112 Mg/L) occurred at USC during February, September and at DSC in November; NO2-N (0.217- 0.042 mg/L) at USC and DSC in February and November; NH4-N (0.0054- 0.065 Mg/L) at WC and DSC in February, May and November. Algal bio-volumes were significantly higher at WC (F (2,780)=4.619; P=0.010). Zooplankton species numbers were consistently lower at WC with a significant difference compared to the control site (P=0.032). Macro-benthos abundance was consistently higher at the site with cages where mollusks and low-oxygen and pollution-tolerant chironomids were the dominant group. Higher algal biomass, concentration of low-oxygen/pollution-tolerant macro-benthos and depressed zooplankton diversity at WC suggested impacts from the fish cages on aquatic biota.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.
Resumo:
A closed aquatic ecosystem (CAES) was developed to stud), the effects of microgravity on the function of closed ecosystems aboard the Chinese retrieved satellite and on the spacecraft SHENZHOU-II. These systems housed a small freshwater snail (Bulinus australianus) and an autotrophic green algae (Chlorella pyrenoidosa). The results of the test on the satellite were that the concentration of algae changed little, but that the snails died during the experiments. We then sought to optimize the function of the control system, the cultural conditions and the data acquisition system and carried out an experiment on the spacecraft SHENZHOU-II. Using various sensors to monitor the CAES, real-time data regarding the operation of the CAES in microgravity was acquired. In addition, all on-board Ig centrifuge was included to identify gravity-related factors. It was found that microgravity is the major factor affecting the operation of the CAES in space. The change in biomass of the primary producer during each day in microgravity was larger than that of the control groups. The mean biomass concentration per day in the microgravity group decreased, but that of the control groups increased for several days and then leveled off. Space effects on the biomass of a primary producer may be a result of microgravity effects leading to increasing metabolic rates of the consumer combined with decreases in photosynthesis. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. © 2014 Elsevier Ltd.
Resumo:
近年来,我国炼油行业发展迅速,炼油能力全世界第二,炼油行业已成为污染大户。本研究针对炼油废水生物处理中存在的稳定达标难、抗冲击负荷能力差、建设投资与运行成本高等问题,就菌剂强化处理炼油废水中试与工程应用展开了研究,以期为菌剂的工程应用与推广提供理论参考与技术支持;并以炼油废水中的主要特征污染物苯酚为研究对象,考察了不同浓度苯酚冲击下功能菌的响应机制,并以此为指导研制功能菌激活促进剂,考察其对功能菌生物学指标的调控效果,以期为废水生物处理有毒污染物冲击调控提供理论依据与技术支持。 中试研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值为86.7、7.6 mg/L,其平均去除率较常规生物处理系统分别提高了35.47%、59.28%,其耐受COD、NH4+-N 容积负荷分别高达2.42、0.139kg/(m3·d),具有良好的耐冲击能力。工程应用研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值分别为85.05、8.4mg/L,其去除率较常规生物处理系统提高了25.1%、28.7%,出水水质各项指标均达到了国家《污水综合排放标准GB 8978-1996》一级排放标准。技术经济分析表明,菌剂强化处理炼油废水在建设成本、运行成本上分别降低38%、49%,具有良好的技术经济优势。 苯酚冲击下功能菌响应机制研究表明:不同浓度苯酚冲击下,生物学指标生物量、脱氢酶酶活、1,2-双加氧酶酶活对冲击都有不同程度的响应,其响应敏感程度为脱氢酶酶活>生物量>1,2-双加氧酶酶活。1,2-双加氧酶酶活与COD 降解率相关性良好,可表征苯酚降解过程,确认为调控重点。以此为指导研制出苯酚降解功能菌抗冲击激活促进剂,可有效调控功能菌对有毒污染物苯酚的降解效果,1000mg/L 苯酚冲击下,经调控,其COD 去除率较对照提高20%,降解时间缩短16%以上。其对生物学指标的调控效果为1,2-双加氧酶酶活>生物量>脱氢酶酶活,验证了功能菌在苯酚冲击下的响应机制。研究表明菌剂强化处理炼油废水切实可行,具有良好的技术经济优势。有毒污染物冲击下废水生物处理系统响应机制研究为抗冲击调控提供了新的研究思路。 Currently, China’s oil refining industry is developing rapidly and has become the second largest all over the world. The oil refining industry is one of the major pollution industries in our country. The pilot scale study and engineering application research were conducted aiming at the problems in refining wastewater such as poor treatment stability and water quality, poor anti-shock capacity and expensive running cost, etc., so as to provide theoretical references and technological supports for the engineering application and popularization of microbial preparation in wastewater treatment. Also, the response mechanism of functional microbe under shock of different phenol concentrations, which is the main pollutants in refinery wastewater, was studied. Based on this result, functional microbe activation accelerator was developed, and the regulation effect of functional microbe biological index under phenol shocking were studied, in order to provide theoretical basis and technological support for regulation of toxic shocking of wastewater biological treatment. The result of pilot scale research indicated: for treatment of refinery wastewater in bioaugmention treatment system of microbial preparation, the COD and NH4+-N average value of effluent was 86.7 and 7.6 mg/L, Comparing with normal biological treatment system, the average removal rates of COD, NH4+-N increased 35.47%,59.28% separately by bioaugmention treatment system, which showed better anti-shocking capacity, the volumetric load r of COD and NH4+-N reached 2.42 kg/(m3·d) and 0.139 kg/(m3·d), respectively. The research on engineering application of refinery wastewater bioaugmentation treatment by microbial preparation indicated:the average concentrations of effluent COD and NH4+-N in the bioaugmentation treatment system were 85.05 and 8.4mg/L, which increased by 25.1% and 28.7% comparing with normal biological treatment system of refinery wastewater, And the effluent quality meets the first grade of discharging standard of National Integrated Wastewater Discharge Standard GB 8978-1996. The economic analysis of technology indicated: the demonstration project of bioaugmentation treatment of refinery wastewater by microbial preparation decreased by 38% in construction cost and 49% in running cost. This technology has economic benefits. The response mechanism of functional microbe under phenol shock indicated: biological index such as the biomass concentration, dehydrogenase and 1,2-dioxygenase had different responses under phenol shocking of different concentrations. The response sensitivity of different biological index under phenol shocking of different concentrations is: dehydogenase activity > biomass >1,2-dioxygenase activity, and high correlation of 1,2-dioxygenase and COD degradation percentage is achieved, thus 1,2-dioxygenase could be used to reflect the degradation situation of pollutants. So, 1,2-dioxygenase is the keypoint of regulation. The anti-shock activation accelerator of phenol degradation functional microbe was primarily developed. The results indicated: the activation accelerator could regulate the degradation effect of toxic substance-phenol by functional microbe effectively. For the functional microbe treatment system under phenol shocking of 1000mg/L, the COD degradation rate increased by 20% and the degradation time reduced by more than 16% under regulation of activation accelerator. The regulation effects of biological index are: 1,2-dioxygenase > biomass > dehydrogenase. In this way, the response mechanism of functional microbe under toxic shocking is verified. The result indicated: the augmented microbial preparation treatment of refinery wastewater is applicable. It has many technical and economical advantages. The research results of responses mechanism of wastewater treatment system on toxic pollutants would offer a new idea for regulation of anti-shock.
Resumo:
lux-marked biosensors for assessing the toxicity and bioremediation potential of polluted environments may complement traditional chemical techniques. luxCDABE genes were introduced into the chromosome of the 2,4-dichlorophenol (2,4-DCP)-mineralizing bacterium, Burkholderia sp. RASC c2, by biparental mating using the Tn4431 system. Experiments revealed that light output was constitutive and related to cell biomass concentration during exponential growth. The transposon insertion was stable and did not interrupt 2,4-DCP-degradative genes, and expression of luxCDABE did not constitute a metabolic burden to the cell. A bioluminescence response was detectable at sublethal 2,4-DCP concentrations: at <10.26 microg ml(-1), bioluminescence was stimulated (e.g. 218% of control), but at concentrations >60 microg ml(-1) it declined to <1%. Investigating the effect of [14C]-2,4-DCP concentration on the evolution of 14CO2 revealed that, for initial concentrations of 2.5-25 microg ml(-1), approximately equals 55% of the added 14C was mineralized after 24 h compared with
Resumo:
Dissertation presented in partial fulfillment of the requirements for the degree of Master in Biotechnology
Resumo:
Dissertation for the Degree of Master in Biotechnology