950 resultados para Biology, Animal Physiology
Resumo:
The cellular mechanisms through which adult rat skeletal muscle protein is regulated during resistance exercise and training was investigated. A model of non-voluntary resistance exercise was described which involves the electrically-stimulated contraction of the lower leg muscles of anesthetized rats against a weighted pulley-bar. Muscle protein synthesis rates were measured by in vivo constant infusion of $\sp3$H-leucine following a single bout of resistance exercise. Specific messenger RNA levels were determined by dot-blot hybridization analysis using $\sp{32}$P-labelled DNA probes after a single bout and multiple bouts of phasic training. The effects of phasic training on increasing skeletal muscle mass was assessed. Between 12 and 36 hours following a single resistance exercise bout (24-192 contractions), total mixed and myofibril protein synthesis rates were significantly increase (32%-65%) after concentric (gastrocnemius m.) and eccentric (tibialis anterior m.) contractions. Eccentric contractions had greater effects on myofibril synthesis with more prolonged increases in synthesis rates. Lower numbers of eccentric than concentric contractions were required to increase synthesis. Cellular RNA was increased after exercise but the relative levels of skeletal $\alpha$-actin and cytochrome c mRNAs were unchanged. Since increases in synthesis rates exceeded increases in RNA, post-transcriptional mechanisms may be primarily responsible for increased protein synthesis after a resistance exercise bout. After 10-22 weeks of phasic eccentric resistance training, muscle enlargement (16%-30%) was produced in the tibialis anterior m. after all training paradigms examined. In contrast, gastrocnemius m. enlargement after phasic concentric training occurred after moderate (24/bout) but not after high (192/bout) repetition training. The absence of muscle growth in the gastrocnemius m. after high repetition training despite increased synthesis rates after the initial bout and RNA and possibly mRNA accumulation during training suggests a role for post-translational mechanisms (protein degradation) in the control of muscle growth in the gastrocnemius m. It is concluded that muscle protein during resistance exercise and training is regulated at several cellular levels. The particular response may be influenced by the exercise intensity and duration, the training frequency and the type of contractile work (eccentric vs. concentric) performed. ^
Resumo:
The interaction of insulin with bovine aorta endothelial (BAE) cells has been studied to determine the effect of insulin on endothelial cells, and investigate the function of the insulin receptor in this cell type. BAE cell insulin receptor is similiar to insulin receptor in other cell types in the time to attain equilibrium binding, its physical properties in a solubilized assay system and affinity for insulin in the low nanomolar range. However, BAE cell insulin receptor has unusual properties in its interaction with insulin at 4$\sp\circ$C that include: (1) the inability to completely dissociate prebound $\sp{125}$I-insulin by dilution with excess insulin or acid rinse treatment, indicating that binding is not completely reversible (2) the inability to remove prebound insulin with trypsin and other proteases (3) the implication of disulfide complex formation during binding (4) the inability of pretreatment with trypsin to lower cell surface binding capacity and (5) the suppression of insulin binding by bacitracin. Interactions of insulin with the receptor at 37$\sp\circ$C showed that (1) BAE cells degrade insulin, but not as extensively as other cell types, and (2) an unusual biphasic interaction of insulin with the BAE cells is observed which is indicative of some regulatory mechanism which modulates binding affinity. Functional characterization of the BAE cell insulin receptor revealed that insulin-induced downregulation and phosphorylation of the receptor was observed, and the extent of these processes were comparable to that demonstrated in non-endothelial cell types. However, in contrast to other cell types, insulin did not stimulate deoxyglucose uptake in BAE cells. We were unable to confirm the receptor-mediated transport of insulin by the receptor across the endothelial cell monolayer as reported by a previous investigator. We could not demonstrate a role for the receptor to promote acute intracellular accumulation of insulin as postulated by several investigators. Thus, while BAE cell insulin receptor has many properties that are similiar to those in other cell types, it is distinctly different in its nondissociable binding at 4$\sp\circ$C, its interaction with insulin at 37$\sp\circ$C, and its functional role in the BAE cell. ^
Resumo:
It has been demonstrated previously that the mammalian heart cannot sustain physiologic levels of pressure-volume work if ketone bodies are the only substrates for respiration. In order to determine the metabolic derangement responsible for contractile failure in hearts utilizing ketone bodies, rat hearts were prefused at a near-physiologic workload in a working heart apparatus with acetoacetate and competing or alternate substrates including glucose, lactate, pyruvate, propionate, leucine, isoleucine, valine and acetate. While the pressure-volume work for hearts utilizing glucose was stable for 60 minutes of perfusion, performance fell by 30 minutes for hearts oxidizing acetoacetate as the sole substrate. The tissue content of 2-oxoglutarate and its transamination product, glutamate, were elevated in hearts utilizing acetoacetate while succinyl-CoA was decreased suggesting impaired flux through the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. Further studies indicated that the inhibition of 2-oxoglutarate dehydrogenase developed prior to the onset of contractile failure and that the inhibition of the enzyme may be related to sequestration of the required cofactor, coenzyme A, as the thioesters acetoacetyl-CoA and acetyl-CoA. The contractile failure was not observed when glucose, lactate, pyruvate, propionate, valine or isoleucine were present together with acetoacetate, but the addition of acetate or leucine to acetoacetate did not improve performance indicating that improved performance is not mediated through the provision of additional acetyl-CoA. Furthermore, addition of competing substrates that improved function did not relieve the inhibition of 2-oxoglutarate dehydrogenase and actually resulted in the further accumulation of citric acid cycle intermediates "upstream" of 2-oxoglutarate dehydrogenase (2-oxoglutarate, glutamate, citrate and malate). Studies with (1-$\sp{14}$C) pyruvate indicate that the utilization of ketone bodies is associated with activation of NADP$\sp+$dependent malic enzyme and enrichment of the C4 pool of the citric acid cycle. The results suggest that contractile failure induced by ketone bodies in rat heart results from inhibition of 2-oxoglutarate dehydrogenase and that reversal of contractile failure is dissociated from relief of the inhibition, but rather is due to the entry of carbon units into the citric acid cycle as compounds other than acetyl-CoA. This mechanism of enrichment (anaplerosis) provides oxaloacetate for condensation with acetyl-CoA derived from ketone bodies allowing continued energy production by sustaining flux through a span of the citric acid cycle up to the point of inhibition at 2-oxoglutarate dehydrogenase for energy production thereby producing the reducing equivalents necessary to sustain oxidative phosphorylation. ^
Resumo:
Neonatal estrogen treatment of BALB/c mice results in the unregulated proliferation of the cervicovaginal epithelium and eventually tumorigenesis. The conversion of the normally estrogen responsive cyclic proliferation of the vaginal epithelium to a continuous estrogen-independent pattern of growth is a complex phenomenon. The aim of this study was to gain an understanding of the mechanism(s) by which steroid hormone administration during a critical period of development alters the cyclic proliferation of vaginal epithelium, ultimately leading to carcinogenesis in the adult animal.^ The LJ6195 murine cervicovaginal tumor was induced by treating newborn female BALB/c mice with 20 $\mu$g 17$\beta$-estradiol plus 100 $\mu$g progesterone for the first 5 days after birth. In contrast to proliferation of the normal vaginal epithelium, proliferation of LJ6195 is not regulated by estradiol. Northern blot analysis of RNA from vaginal tracts of normal mice, neonatal-estrogen treated mice, and LJ6195 indicate that there is an alteration in the expression of several genes such as the estrogen receptor, c-fos, and HER2/neu. In response to neonatal estrogen treatment, the estrogen receptor is down regulated in the murine vaginal tract. Therefore, the estrogen-independent nature of this tissue is established as early as 3 months after treatment. There is strong evidence that the proliferation of LJ6195 is regulated through an autocrine growth pathway. The LJ6195 tumor expresses mRNA for the epidermal growth factor receptor. In addition, conditioned medium from the LJ6195 tumor cell line contains a growth factor(s) with epidermal growth factor-like activity. Conditioned medium from the LJ6195 cell line stimulated the proliferation of the EGF-dependent COMMA D mouse mammary gland cell line in a dose-dependent manner. The addition of an anti-mEGF-antibody to LJ6195 cell cultures significantly decreased growth. These results suggest that the EGF-receptor mediated growth pathway may play a role in regulating the estrogen-independent proliferation of the LJ6195 tumor. ^
Resumo:
Studies were performed to test the hypothesis that type I hypersensitivity underlies worm induced intestinal fluid secretion and the rapid rejection of Trichinella spiralis from immunized rats, and the two events may be related in a cause-effect manner.^ Two approaches were taken. One was to determine whether inhibition of anaphylaxis-mediated Cl$\sp{-}$ and fluid secretion accompanying a secondary infection impedes worm rejection from immune hosts. The other was to determine whether induction of intestinal fluid secretion in nonimmune hosts interfered with worm establishment. In both studies, fluid secretion was measured volumetrically 30 min after a challenge infection and worms were counted.^ In immunized rats indomethacin did not affect the worm-induced fluid secretion when used alone, despite inhibiting mucosal prostaglandin synthesis. Fluid secretion was reduced by treatment with diphenhydramine and further reduced by the combination of diphenhydramine and indomethacin. The paradoxical effects of indomethacin when used alone compared with its coadministration with diphenhydramine is explained by the enhancing effect of indomethacin on histamine release. Abolishing net fluid secretion in these studies had no effect on rapid worm rejection in immune hosts.^ Worm establishment was reduced in recipients of immune serum containing IgE antibodies. Net intestinal fluid secretion induced in normal rats by PGE$\sb2$, cholera toxin, or hypertonic mannitol solution had no effect on worm establishment compared with untreated controls.^ In a related experiment, worm-induced intestinal fluid secretion and worm rejection in immune rats were partially blocked by concurrent injection with 5-HT$\sb2$ and 5-HT$\sb3$ blockers (Ketanserin and MDL-72222), suggesting that 5-HT is involved. This possible involvement was supported in that treatment of nonimmune rats with 5-HT significantly inhibited worm establishment in the intestine.^ Results indicate that anaphylaxis is the basis for both worm-induced intestinal fluid secretion and rapid rejection of T. spiralis in immune rats, but these events are independent of one another. 5-HT is a possible mediator of worm rejection, however, its mechanism of action is related to something other than fluid secretion. ^
Resumo:
Most tissue-invasive parasitic helminths prime for type 1 hypersensitivity or anaphylaxis during some phase of their life cycles. A prototype in this regard is the nematode Trichinella spiralis. Blood protozoa capable of tissue invasion, such as Trypanosoma brucei, might also be expected to prime for the expression of anaphylaxis. However, this response is usually absent in protozoal infections. The hypothesis tested was that failure of hosts infected with T.brucei to express anaphylaxis is related to this parasite's ability to selectively down-regulate immunoglobulin E (IgE) production, and not to an innate lack of allergenicity on the part of T.brucei-derived antigens. This hypothesis was tested by studying in the intestine of rats, antigen-induced Cl$\sp-$ secretion, which results from a local anaphylactic response mediated by IgE and mucosal mast cells. The Cl$\sp-$ secretory response can be primed either by infection with T.spiralis or by the parenteral administration of antigen. Anaphylaxis-induced Cl$\sp-$ secretion is expressed in vitro, and can be quantified electrophysiologically, as a change in transmural short-circuit current when sensitized intestine is mounted in Ussing chambers and challenged with the sensitizing antigen.^ Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge. In contrast, the intestine of rats infected with T.brucei failed to respond to challenge with trypanosome antigen. Infection with T.brucei also suppressed antigen-induced Cl$\sp-$ secretion in rats sensitized and challenged with various antigens, including T.spiralis antigen. However, T.brucei infection did not inhibit the anaphylactic response in rats concomitantly infected with T.spiralis. Relative to the anaphylactic mediators, T.brucei infection blocked production of IgE in rats parenterally injected with antigen but not in T.spiralis-infected hosts. Also, the mucosal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. These results support the conclusion that the failure to express anaphylaxis-mediated Cl$\sp-$ secretion in T.brucei infected rats, is due to this protozoan's ability to inhibit IgE production and not to the lack of allergenicity of trypanosome antigens. ^
Resumo:
The present study investigated the role of oxygen-derived free radicals as mediators of acute damage to rat gastric mucosae exposed to topically applied absolute ethanol. Although a hydroxyl radical scavenger, Dimethylthiourea, was noted to exhibit profound gastroprotective properties, other pretreatment regimens employing a host of known free radical scavengers, and enzyme inhibitors failed to confirm this hypothesis. Furthermore, no change in mucosal malondialdehyde, an indicator of free radical attack to cell membranes, could be detected in ethanol exposed tissues. Taken together, the present study fails to confirm that oxygen-derived free radicals mediate the gastric damaging effects of topically applied absolute ethanol. ^
Resumo:
Neuromodulation is essential to many functions of the nervous system. In the simple gastropod mollusk Aplysia californica, neuromodulation of the circuits for the defensive withdrawal reflexes has been associated with several forms of learning. In the present work, the neurotransmitters and neural circuitry which contribute to the modulation of the tail-siphon withdrawal reflex were examined.^ A recently-identified neuropeptide transmitter, buccalin A was found to modulate the biophysical properties of the sensory neurons that mediate the reflex. The actions of buccalin A on the sensory neurons were compared with those of the well-characterized modulatory transmitter serotonin, and convergence and divergence in the actions of these two transmitters were evaluated. Buccalin A dramatically increased the excitability of sensory neurons and occluded further enhancement of excitability by serotonin. Buccalin A produced no significant change in spike duration, and it did not block serotonin-induced spike broadening. Voltage-clamp analysis revealed the currents that may be involved in the effects on spike duration and excitability. Buccalin A decreased an outward current similar to the S-K$\sp+$ current (I$\sb{\rm K,S}$). Buccalin A appeared to occlude further modulation of I$\sb{\rm K,S}$ by serotonin, but did not block serotonin-induced modulation of the voltage-dependent delayed rectifier K$\sp+$ current (I$\sb{\rm K,V}$). These results suggest that buccalin A converges on some, but not all, of the same subcellular modulatory pathways as serotonin.^ In order to begin to understand neuromodulation in a more physiological context for the tail-siphon withdrawal reflex, the modulatory circuitry for the tail-withdrawal circuit was examined. Mechanoafferent neurons in the J cluster of the cerebral ganglion were identified as elements of a modulatory circuit for the reflex. Excitatory and inhibitory connections were observed between the J cells and the pleural sensory neurons, the tail motor neurons, and several classes of interneurons for the tail-siphon withdrawal circuit. The J cells produced both fast and slow PSPs in these neurons. Of particular interest was the ability of the J cells to produce slow EPSPs in the pleural sensory neurons. These slow EPSPs were associated with an increase in the excitability of the sensory neurons. The J cells appear to mediate both sensory and modulatory inputs to the circuit for the tail-siphon withdrawal reflex from the anterior part of the animal. ^
Resumo:
A membrane fraction (M$\sb{\rm PS}$), enriched in Cl$\sp-$ channels, has been isolated from bovine tracheal epithelia and renal cortex homogenates by hydrophobic chromatography. The tracheal fraction shows a 37 fold enrichment of Cl$\sp-$ channels over crude tracheal homogenates by net Cl$\sp-$ measurements in membrane vesicles. Alkaline phosphatase and (Na$\sp+$ + K$\sp+$)-ATPase are not found in these membranes, suggesting that they are not apical or basolateral plasma membranes. The M$\sb{\rm PS}$ fraction exhibits a protein profile unlike that of other membrane fractions with major proteins of 200 kDa and 42 kDa, proteins of 30 to 35 kDa, and lesser amounts of other proteins. Reconstitution of M$\sb{\rm PS}$ fractions from both trachea and kidney into planar lipid bilayers demonstrates the presence of a single type of anion channel. The current-voltage relationship of this channel is linear with a slope conductance of 84 pS in symmetrical 400 mM KCl, and is identical to that of the predominant anion channel observed in tracheal apical membranes under similar conditions (Valdivia, Dubinsky, and Coronado. Science, 1988). In addition, the voltage dependence, selectivity sequence of Cl$\sp- >$ Br$\sp- \ge$ I$\sp-$, and inhibition by low concentrations of the Cl$\sp-$ channel blocker, DIDS, correspond to those of the predominant apical membrane channel. Thus, although the M$\sb{\rm PS}$ fraction appears to be of subcellular origin, it may be functionally related to an apical membrane Cl$\sp-$ permeability. When renal M$\sb{\rm PS}$ membranes were treated with the detergent octyl-glucoside (OG, 2%) and centrifuged, the supernatant, sM$\sb{\rm PS}$, showed a 2 to 7-fold enrichment in specific Cl$\sp-$ flux activity compared with the detergent treated M$\sb{\rm PS}$. These solubilized proteins were then size fractionated on a Superose 12 HPLC gel filtration column, followed by fractionation on a Mono Q HPLC anion exchange column. Fractions that eluted in high salt consistently exhibited significant Cl$\sp-$ flux activity. These fractions had protein profiles consisting of a major band at 34 kDa, a band at 66 kDa, and variable faint bands. Fractions eluting in lower salt had protein profiles consisting of a single band at 34 kDa, and often had little or no Cl$\sp-$ flux activity. However, co-reconstitution of the low salt, solely 34 kDa protein-containing Mono Q fractions with sM$\sb{\rm PS}$ resulted in an enhancement of flux activity compared to that of sM$\sb{\rm PS}$ reconstituted alone. Flux assays of active Mono Q fractions showed that the channel retained its DIDS sensitivity. Applying sM$\sb{\rm PS}$ to a DIDS-affinity column and eluting with salt resulted in fractions with protein profiles again consisting of at least one major band at 34 kDa, a band at 66 kDa, and variable faint bands. Co-reconstitution with sM$\sb{\rm PS}$ again resulted in an enhancement of activity. Thus, the 34 kDa protein appears to be a component of the M$\sb{\rm PS}$ Cl$\sp-$ channel. ^
Resumo:
Thin filament regulation of muscle contraction is a calcium dependent process mediated by the Tn complex. Calcium is released into the sarcomere and is bound by TnC. The subsequent conformation change in TnC is thought to begin a cascade of events that result in the activation of the actin-myosin ATPase. While the general events of this cascade are known, the molecular mechanisms of this signal transduction event are not. Recombinant DNA techniques, physiological and biochemical studies have been used to localize and characterize the structural domains of TnC that play a role in the calcium dependent signal transduction event that serves to trigger muscle contraction. The strategy exploited the observed functional differences between the isoforms of TnC to map regions of functional significance to the proteins. Chimeric cardiac-skeletal TnC proteins were generated to localize the domains of TnC that are required for maximal function in the myofibrilar ATPase assay. Characterization of these regions has yielded information concerning the molecular mechanism of muscle contraction. ^
Resumo:
Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^
Resumo:
The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^
Resumo:
Myogenin is a member of the MyoD family of skeletal muscle specific bHLH transcription factors. All of the members of this family have been shown to initiate the muscle differentiation cascade in a variety of nonmuscle cell lines. Many of the properties of the MyoD family have been studied in vitro, but their in vivo roles had not yet been examined. In this thesis, I study the in vivo role of myogenin by creating mice that carry a mutation at the myogenin locus.^ Mice lacking the myogenin protein are born alive, but immobile. Histological examination showed that these mice are severely deficient in skeletal muscle; they show a reduction in the number and density of myofibers. In addition to the reduction in fiber number, these mice express lower levels of a variety of muscle-specific markers. The undifferentiated cells in the muscle forming regions of these mice do express some muscle-specific markers, indicating that these cells are determined but undifferentiated myoblasts. Additional studies show that the major muscle defect arises late in embryogenesis, at a time coincident with secondary myogenesis. Moreover, studies regarding the nature of the remaining myofibers indicate that they are representative of a normal population of myofibers, merely reduced in numbers. In addition, I studied the effects of combining the myogenin mutation with mutations in two other members of the MyoD family, MyoD and myf5. Mice mutant in myogenin + MyoD and myogenin + myf5 show no increase in the severity of the myogenin single mutation, as indicated by histological or molecular examination. These results reveal the unique and essential role of myogenin in mammalian skeletal myogenesis. ^
Resumo:
We postulated that neuromuscular disuse results in deleteriously affected tissue-vascular fluid exchange processes and subsequently damages the important oxidative bioenergetic process of intramuscular lipid metabolism. The in-depth research reported in the literature is somewhat limited by the ex vivo nature and sporadic time-course characterization of disuse atrophy and recovery. Thus, an in vivo controlled, localized animal model of disuse atrophy was developed in one of the hindlimbs of laboratory rabbits (employing surgically implanted tetrodotoxin (TTX)-filled mini-osmotic pump-sciatic nerve superfusion system) and tested repeatedly with magnetic resonance (MR) throughout the 2-week period of temporarily induced disuse and during the recovery period (following explantation of the TTX-filled pump) for a period of 3 weeks. Controls consisted of saline/"sham"-implanted rabbit hindlimbs. The validity of this model was established with repeated electrophysiologic nerve conduction testing using a clinically appropriate protocol and percutaneously inserted small needle stimulating and recording electrodes. Evoked responses recorded from proximal (P) and distal (D) sites to the sciatic nerve cuff in the TTX-implanted group revealed significantly decreased (p $<$ 0.001) proximal-to-distal (P/D) amplitude ratios (as much as 50-70% below Baseline/pre-implanted and sham-implanted group values) and significantly increased (p $<$ 0.01) differential latency (PL-DL) values (as much as 1.5 times the pre- and sham-implanted groups). By Day 21 of recovery, observed P/D and PL-DL levels matched Baseline/sham-implemented levels. MRI-determined cross-sectional area (CSA) values of Baseline/pre-implanted, sham- or TTX-implanted, and recovering/explanted and the corresponding contralateral hindlimb tibialis anterior (TA) muscles normalized to tibial bone (TB) CSA (in TA/TB ratios) revealed that there was a significant decline (indicative of atrophic response) from pre- and sham-implanted controls by as much as 20% (p $<$ 0.01) at Day 7 and 50-55% (p $<$ 0.001) at Day 13 of TTX-implantation. In the non-implanted contralaterals, a significant increase (indicative of hypertrophic response) by as much as 10% (p $<$ 0.025) at Day 7 and 27% (p $<$ 0.001) at Day 13 + TTX was found. The induced atrophic/hypertrophic TA muscles were observed to be fully recovered by Day 21 post-explantation as evidenced by image TA/TB ratios. End-point biopsy results from a small group of rabbits revealed comprehensive atrophy of both Type I and Type II fibers, although the heterogeneity of the response supports the use of image-guided, volume-localized proton magnetic resonance spectroscopy (MRS) to noninvasively assess tissue-level metabolic changes. MRS-determined results of a 0.25cc volume of tissue within implanted limb TA muscles under resting/pre-ischemic, ischemic-stressed, and post-ischemic conditions at timepoints during and following disuse atrophy/recovery revealed significantly increased intramuscular spectral lipid levels, as much as 2-3 times (p $<$ 0.01) the Baseline/pre-implanted values at Day 7 and 6-7 times (p $<$ 0.001) at Day 13 + TTX, which approached normal levels (compared to pre- and sham-implanted groups) by Day 21 of post-explanation recovery. (Abstract shortened by UMI.) ^
Resumo:
Glomerular mesangial cells (MC) are renal vascular cells that regulate the surface area of glomerular capillaries and thus, partly control glomerular filtration rate. Clarification of the signal transduction pathways and ionic mechanisms modulating MC tone are critical to understanding the physiology and pathophysiology of these cells, and the integrative role these cells play in fluid and electrolyte homeostasis. The patch clamp technique and an assay of cell concentration were used to electrophysiologically and pharmacologically analyze the ion channels of the plasmalemmal of human glomerular MC maintained in tissue culture. Moreover, the signal transduction pathways modulating channels involved in relaxation were investigated. Three distinct K$\sp+$-selective channels were identified: two low conductance channels (9 and 65pS) maintained MC at rest, while a larger conductance (206pS) K$\sp+$ channel was quiescent at rest. This latter channel was pharmacologically and biophysically similar to the large, Ca$\sp{2+}$-activated K$\sp+$ channel (BK$\rm\sb{Ca}$) identified in smooth muscle. BK$\rm\sb{Ca}$ played an essential role in relaxation of MC. In cell-attached patches, the open probability (P$\rm\sb{o}$) of BK$\rm\sb{Ca}$ increased from a basal level of $<$0.05 to 0.22 in response to AII (100nM)-induced mobilization of cytosolic Ca$\sp{2+}$. Activation in response to contractile signals (membrane depolarization and Ca$\sp{2+}$ mobilization) suggests that BK$\rm\sb{Ca}$ acts as a low gain feedback regulator of contraction. Atrial natriuretic factor (ANF; 1.0$\mu$M) and nitroprusside (NP; 0.1mM), via the second messenger, cGMP, increase the feedback gain of BK$\rm\sb{Ca}$. In cell-attached patches bathed with physiological saline, these agents transiently activated BK$\rm\sb{Ca}$ from a basal $\rm P\sb{o}<0.05$ to peak responses near 0.50. As membrane potential hyperpolarizes towards $\rm E\sb{K}$ (2-3 minutes), BK$\rm\sb{Ca}$ inactivates. Upon depolarizing V$\rm\sb{m}$ with 140 mM KCl, db-cGMP (10$\mu$M) activated BK$\rm\sb{Ca}$ to a sustained P$\rm\sb{o}$ = 0.51. Addition of AII in the presence of cGMP further increased P$\rm\sb{o}$ to 0.82. Activation of BK$\rm\sb{Ca}$ by cGMP occured via an endogenous cGMP-dependent protein kinase (PKG): in excised, inside-out patches, PKG in the presence of Mg-ATP (0.1mM) and cGMP increased P$\rm\sb{o}$ from 0.07 to 0.39. In contrast, neither PKC nor PKA influenced BK$\rm\sb{Ca}$. Endogenous okadaic acid-sensitive protein phosphatase suppressed BK$\rm\sb{Ca}$ activity. Binning the change in P$\rm\sb{o}\ (\Delta P\sb{o}$) of BK$\rm\sb{Ca}$ in response to PKG (n = 69) established two distinct populations of channels: one that responded ($\cong$67%, $\rm\Delta P\sb{o} = 0.45 \pm 0.03$) and one that was unresponsive ($\Delta\rm P\sb{o} = 0.00 \pm 0.01$) to PKG. Activation of BK$\rm\sb{Ca}$ by PKG resulted from a decrease in the Ca$\sp{2+}$- and voltage-activation thresholds independent of sensitivities. In conclusion, mesangial BK$\rm\sb{Ca}$ channels sense both electrical and chemical signals of contraction and act as feedback regulators by repolarizing the plasma membrane. ANF and NO, via cGMP, stimulate endogenous PKG, which subsequently decreases the activation threshold of BK$\rm\sb{Ca}$ to increase the gain of this feedback regulatory signal. ^