951 resultados para Biological structure
Resumo:
The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The concept of "water structure" has been invoked to explain all manner of aqueous phenomena. Here we look at the origins of this tendency to understand solute hydration in terms of structural changes in bulk water, and consider the validity of one particular example: the classification of small solutes as chaotropic or kosmotropic, and the putative relation of this terminology to notions of structure-making and structure-breaking in the solvent. We doubt whether complex phenomena such as Hofmeister and osmolyte effects on macromolecules can be understood simply on the basis of a change in solvent structure. Rather, we argue that chaotropicity, if understood in the original sense, arises from the activities that solutes exert on macromolecular systems, as well as from deviations of solvation water from bulk-like behaviour. If applied judiciously, chaotropicity remains a potent, biologically pertinent parameter useful for classifying and understanding solution phenomena in all types of living system.
Resumo:
Synthesis, characterization, crystal structure, and biological studies of two complexes with glycolic acid are described. The solid complexes were formulated as K2[VO(C2H2O3)(C2H3O3)2] H2O (1) and K2[{VO2(C2H2O3)}2] (2) and characterized by X-ray studies, Fourier transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and magnetic susceptibility. Conversion of 1 to 2 was studied in aqueous solution by UV-Vis spectroscopy and in the solid state by diffuse reflectance spectroscopy. Complex 2 contains dinuclear [{VO2(C2H2O3)}2]2- anions in which glycolate(2-) is a five-membered chelating ring formed by carboxylate and -hydroxy groups. The geometry around the vanadium in 2 was interpreted as intermediate between a trigonal bipyramid and a square pyramid. Vanadium(IV) is pentacoordinate in 1 as a distorted square pyramid. Complex 1 contains a vanadyl group (V=O) surrounded by two oxygens from deprotonated carboxylate and hydroxy groups forming a five-membered ring. Two oxygens from different glycolates(1-) are bonded to the (V=O) also. Biological analysis for potential cytotoxic effects of 1 was performed using Human Cervix Adenocarcinoma (HeLa) cells, a human cervix adenocarcinoma-derived cell line. After incubation for 48 h, 1 causes 90 and 95% of HeLa cells death at 20 and 200 mol L-1, respectively.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Crotoxin B (CB or Cdt PLA(2)) is a basic Asp49-PLA(2) found in the venom of Crotalus durissus terrificus and it is one of the subunits that constitute the crotoxin (Cro). This heterodimeric toxin, main component of the C. d. terrificus venom, is completed by an acidic, nontoxic, and nonenzymatic component (crotoxin A, CA or crotapotin), and it is related to important envenomation effects such as neurological disorders, myotoxicity, and renal failure. Although Cro has been crystallized since 1938, no crystal structure of this toxin or its subunits is currently available. In this work, the authors present the crystal structure of novel tetrameric complex formed by two dimers of crotoxin B isoforms (CB1 and CB2). The results suggest that these assemblies are stable in solution and show that Ser1 and Glu92 of CB1 and CB2, respectively, play an important role in the oligomerization. The tetrameric and dimeric conformations resulting from the association of the isoforms may increase the neurotoxicity of the toxin CB by the creation of new binding sites, which could improve the affinity of the molecular complexes to the presynaptic membrane.
Resumo:
Specimens of the zipper sand skate Psammobatis extenta were collected in the region of Ubatuba off the northern coast of the State of São Paulo, Brazil, monthly for once year (January - December 2000), at 25- to 40-m isobaths. A total of 123 individuals were caught. The total length (TL) of females averaged 224.6 mm, and of males 217 mm. The overall sex ratio was 1:1. Analysis of the length-weight relationship indicated the existence of positive allometry in females, and isometry in males. The length at onset of sexual maturity was determined for both sexes; females reached sexual maturity at smaller sizes than males (TL50 = 230.7 and TL50 = 237.7 mm respectively). Females showed functional parity of both ovaries and uteri. Females that were pregnant or were carrying vitellogenic oocytes were observed during nine of 12 months of the survey, indicating a continuous reproductive cycle. Psammobatis extenta was most abundant from January to April, and again from June to October. Most individuals were collected at the 40-m isobath. Both adults and neonates were collected in the study area. However, adolescent skates were scarce, which either indicates differential occupation of the area, or suggests that the shallow waters of the continental shelf are used as breeding grounds.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new mast cell degranulating peptide, eumenine mastoparan-AF (EMP-AF), was isolated from the venom of the solitary wasp Anterhynchium flavomarginatum micado, the most common eumenine wasp found in Japan. The structure was analyzed by FAB-MS/MS together with Edman degradation, which was corroborated by solid-phase synthesis. The sequence of EMP-AF, Ile-Asn-Leu-Leu-Lys-Ile-Ala-Lys-Gly-Ile-lle-Lys-Ser-Leu-NH(2), was similar to that of mastoparan, a mast cell degranulating peptide from a hornet venom; tetradecapeptide with C-terminus amidated and rich in hydrophobic and basic amino acids. In fact, EMP-AF exhibited similar activity to mastoparan in stimulating degranulation from rat peritoneal mast cells and RBL-2H3 cells. It also showed significant hemolytic activity in human erythrocytes. Therefore, this is the first example that a mast cell degranulating peptide is found in the solitary wasp venom. Besides the degranulation and hemolytic activity, EMP-AF also affects on neuromuscular transmission in the lobster walking leg preparation. Three analogs EMP-AF-1 similar to 3 were snythesized and biologically tested together with EMP-AF, resulting in the importance of the C-terminal amide structure for biological activities. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Plant lectins, especially those purified from species of the Legummosae family, represent the best studied group of carbohydrate-binding proteins. The legume lectins from Diocleinae subtribe are highly similar proteins that present significant differences in the potency/ efficacy of their biological activities. The structural studies of the interactions between lectins and sugars may clarify the origin of the distinct biological activities observed in this high similar class of proteins. In this way, this work presents a crystallographic study of the ConM and CGL (agglutinins from Canavalia maritima and Canavalia gladiata, respectively) in the following complexes: ConM/ CGL:Man(alpha 1-2)Man(alpha 1-0)Me, ConM/CGL:Man(alpha 1-O)Man(alpha 1-O)Me and ConM/CGL:Man(alpha 1-4)Man(alpha 1-O)Me, which crystallized in different conditions and space group from the native proteins.The structures were solved by molecular replacement, presenting satisfactory values for R-factor and R-factor. Comparisons between ConM, CGL and ConA (Canavalia ensiformis lectin) binding mode with the dimannosides in subject, presented different interactions patterns, which may account for a structural explanation of the distincts biological properties observed in the lectins of Diocleinae subtribe. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pseudomonas aeruginosa LBI isolated from petroleum-contaminated soil produced rhamnolipids (RLLBI) when cultivated on soapstock as the sole carbon source. HPLC-MS analysis of the purified culture supernatant identified 6 RL homologues (%): R-2 C-10 C-10 28.9; R-2 C-10 C-12:1 23.0; R-1 C-10 C-10 23.4; R-2 C-10 C-12 11.3; R-2 C-10 C-12 7.9; R-2 C-10 C-12 C-12 5.5. To assess the potential antimicrobial activity of the new rhamnolipid product, RLLBI, its physicochemical properties were studied. RLLBI had a surface tension of 24 mN m(-1) and an interfacial tension 1.31 mN m(-1); the cmc was 120 mg l(-1). RLLBI produced stable emulsions with hydrocarbons and vegetable oils. This product showed good antimicrobial behaviour against bacteria: MIC for Bacillus subtilis, Staphylococcus aureus and Proteus vulgaris was 8 mg l(-1), for Streptococcus faecalis 4 mg l(-1), and for Pseudomonas aeruginosa 32 mg l(-1). RLLBI was active against phytopathogenic fungal species, MIC values of 32 mg l(-1) being found against Penicillium, Alternaria, Gliocadium virens and Chaetonium globosum. Due to its physicochemical properties and antimicrobial behaviour, RLLBI could be used in bioremediation treatment and in the food, cosmetic and pharmaceutical industries.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)