930 resultados para Biological diversity conservation
Resumo:
Growing economic globalisation by extending the operation of markets is a two-edged sword as far as nature conservation is concerned. In some circumstances, it threatens the conservation of nature and in other cases, it provides economic incentives that foster the conservation of biodiversity. This article shows how global policy directions have altered in that regard. Initially the World Conservation Union (IUCN) favoured bans on trade in endangered species. This view was enshrined in the Convention on International Trade in Endangered Species (CITES). Subsequently, with the upsurge of support for market-based economic liberalism, IUCN recognised that economic and market incentives, if linked to appropriate property rights, could foster biodiversity conservation. This is reflected in the International Convention on Biological Diversity. While there is conflict between this convention and CITES, its extent has been exaggerated. As explained, in certain cases, trade restrictions of the type adopted in CITES are appropriate for nature conservation whereas the market-oriented policy of the Convention on Biological Diversity can be effective in some different situations. Whether or not the extension of markets in wildlife and wildlife products and growing economic globalisation favours nature conservation varies according to the circumstances.
Resumo:
Considers the relevance of A.K. Sen’s theory of entitlements to the situation facing indigenous tribal people, its relationship to institutionalism, and to theories of property rights. Changing world views about the resource entitlements that should be given to local communities are outlined concentrating on the views expressed by the World Conservation Union (IUCN). These changing views have relevance for the resource entitlements of indigenous tribal communities and are reflected in differences in the policy approaches inherent in the Convention on International Trade in Endangered Species (CITES) and the more recent Convention on Biological Diversity. The latter embodies the view that provision of greater resource entitlements to local communities can provide economic incentives for nature conservation. There is a case for Indigenous Australians to be given greater rights to market the natural produce from their lands. Despite progress with land rights, they are not entitled to market much of the natural produce from their land. The socioeconomic status of Australian Aborigines is outlined. Their standard of living and their life expectancy are low by world standards and in comparison to other Australians. This is partly a result of historical events that have restricted their rights. These events are outlined briefly. Views differ about the appropriate development paths for Indigenous Australians and these are assessed. Concern on environmental and economic grounds is expressed about the view that the economic development of Australian Aboriginal communities would be accelerated by replacing their communal land titles by private land titles and encouraging Western-style agriculture and commercial development of their lands. Some comparisons are also made with the situation of India’s Tribals.
Resumo:
Habitat loss and the resultant fragmentation of remaining habitat is the primary cause of loss of biological diversity. How do these processes affect the dynamics of parasites and pathogens? Hess has provided some important insights into this problem using metapopulation models for pathogens that exhibit 'S-I' dynamics; for example, pathogens such as rabies in which the host population may be divided into susceptible and infected individuals. A major assumption of Hess's models is that infected patches become extinct, rather than recovering and becoming resistant to future infections. In this paper, we build upon this framework in two different ways: first, we examine the consequences of including patches that are resistant to infection; second, we examine the consequences of including a second species of host that can act as a reservoir for the pathogen. Both of these effects are likely to be important from a conservation perspective. The results of both sets of analysis indicate that the benefits of corridors and other connections that allow species to disperse through the landscape far outweigh the possible risks of increased pathogen transmission. Even in the commonest case, where harmful pathogens are maintained by a common reservoir host, increased landscape connectance still allows greater coexistence and persistence of a threatened or endangered host.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
Depuis les années 90, les Projets Intégrés de Conservation et Développement ont été présentés comme des modèles fonctionnels de développement durable pour un site spécifique dans une perspective de réalisation. Le but est d’intégrer les objectifs biologiques de la conservation aux objectifs sociaux et économiques du développement. Ces projets, qui répondent à de multiples dénominations et stratégies, sont implantés dans des contextes naturellement hétérogènes et dynamiques, où l’aménagement du territoire ne doit pas être un outil de planification étatique, désigné et imposé dans une logique conservationniste. Les aires protégées représentent une certaine vision du rapport entre l’être humain et la nature, apparue dans le contexte nord-américain avec la création des premiers grands parcs nationaux en 1870. Aujourd'hui, la forte volonté d'impliquer la population se heurte avec la difficulté de concilier la gestion de ces espaces avec les pratiques, les nécessités et les intérêts locaux. Le parc naturel Obô, qui occupe 30% du territoire de São Tomé et Principe, doit affronter la difficile intégration entre les représentations de la nature et les usages locaux avec les objectifs globaux des politiques conservationnistes, ainsi qu’avec les intérêts touristiques et économiques des investisseurs locaux et étrangers. Les représentations sociales de la nature, établissant une forme de connaissance pratique, déterminent la vision du monde et la relation qu'un certain groupe social peut avoir avec le territoire. Ainsi, chaque communauté possède ses propres mécanismes d'adaptation au milieu basés sur ce système représentationnel. Dans le cas des communautés sãotoméennes, la nature présente un caractère spirituel (associé à des croyances, des rites et des pratiques médicales traditionnelles) et utilitaire (la nature, à travers l'agriculture, la récolte ou la chasse, répond au besoin de subsistance). L’objectif de ce projet de thèse est donc de mieux comprendre la synergie existante entre savoir endogène et gestion de la biodiversité pour adapter l’aménagement du territoire à la réalité des populations qui y vivent.
Resumo:
Le suivi des populations animales et végétales nous a amené à constater une perte importante de la diversité biologique. Les objectifs de la Convention sur la diversité biologique à atteindre pour 2010 sous-tendent la poursuite détaillée de ce suivi à l’échelle mondiale (CBD 2000). Cependant, il est difficile d’avoir une perception d’ensemble de la biodiversité d’un territoire, car les écosystèmes sont des entités dynamiques et évolutives, dans l’espace et dans le temps. Le choix d’un indicateur relevant de l’ensemble des ces caractéristiques devient donc primordial, bien qu’il s’agisse d’une tâche laborieuse. Ce projet propose d’utiliser la bioacoustique comme indicateur environnemental pour faire le suivi des espèces animales en milieu tropical. Afin de faire un suivi à une échelle régionale de la biodiversité, et ce, dans l’un des biomes les plus menacés de la planète, soit celui de la Mata Atlântica brésilienne, ce projet de recherche a comme objectif général de démontrer qu’il est possible d’associer la biophonie (événements sonores), à des événements biologiques (la richesse spécifique animale) en quantifiant des événements sonores (à l’aide des chants produits par les oiseaux, les insectes chanteurs de même que par les anoures) et en tentant de les associer aux fluctuations de la biodiversité. En plus de répondre à cet objectif général, trois objectifs spécifiques ont été définis : 1) comparer la biophonie et l’anthropophonie de milieux soumis à différents niveaux d’anthropisation ou de conservation afin d’évaluer l’impact anthropique sur le milieu, 2) évaluer la variabilité spatiale de la biodiversité, de même que 3) sa variabilité temporelle. Les résultats ont démontré que la biophonie est représentative de la biodiversité d’un milieu, et ce, même dans des conditions de biodiversité maximale puisqu’il existe une très forte relation entre les deux variables. De plus, les résultats révèlent une différence significative dans le ratio anthropophonie/biophonie de milieux soumis à différents niveaux de protection du territoire. La différenciation d’indices de puissance relative (dB/kHz) nous indique également l’importance de la variabilité spatiale et temporelle de la biodiversité, et par conséquent, l’importance de faire le suivi des espèces dans divers milieux et à diverses périodes afin d’obtenir une vision adéquate de la biodiversité régionale.
Resumo:
A review is given of the major conceptual changes that have taken place during the last 50 years in our understanding of the nature of plant conservation and of the principal methodological advances in undertaking conservation assessments and actions, largely through the incorporation of tools and techniques from other disciplines. The interrelationships between conservation and sustainable use are considered as well as the impact of the development of the discipline of conservation biology, the effects of the general acceptance of the concept of biodiversity and the practical implications of the implementation of the Convention on Biological diversity. The effect on conservation policy and management of the accelerating loss or conversion of habitats throughout the world and approaches for combating this are discussed.
Resumo:
There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
Resumo:
Recent global assessments have shown the limited coverage of protected areas across tropical biotas, fuelling a growing interest in the potential conservation services provided by anthropogenic landscapes. Here we examine the geographic distribution of biological diversity in the Atlantic Forest of South America, synthesize the most conspicuous forest biodiversity responses to human disturbances, propose further conservation initiatives for this biota, and offer a range of general insights into the prospects of forest species persistence in human-modified tropical forest landscapes worldwide. At the biome scale, the most extensive pre-Columbian habitats across the Atlantic Forest ranged across elevations below 800 masl, which still concentrate most areas within the major centers of species endemism. Unfortunately, up to 88% of the original forest habitat has been lost, mainly across these low to intermediate elevations, whereas protected areas are clearly skewed towards high elevations above 1200 masl. At the landscape scale, most remaining Atlantic Forest cover is embedded within dynamic agro-mosaics including elements such as small forest fragments, early-to-late secondary forest patches and exotic tree mono-cultures. In this sort of aging or long-term modified landscapes, habitat fragmentation appears to effectively drive edge-dominated portions of forest fragments towards an early-successional system, greatly limiting the long-term persistence of forest-obligate and forest-dependent species. However, the extent to which forest habitats approach early-successional systems, thereby threatening the bulk of the Atlantic Forest biodiversity, depends on both past and present landscape configuration. Many elements of human-modified landscapes (e.g. patches of early-secondary forests and tree mono-cultures) may offer excellent conservation opportunities, but they cannot replace the conservation value of protected areas and hitherto unprotected large patches of old-growth forests. Finally, the biodiversity conservation services provided by anthropogenic landscapes across Atlantic Forest and other tropical forest regions can be significantly augmented by coupling biodiversity corridor initiatives with biota-scale attempts to plug existing gaps in the representativeness of protected areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Stabilizing human population size and reducing human-caused impacts on the environment are keys to conserving threatened species (TS). Earth's human population is ~ 7 billion and increasing by ~ 76 million per year. This equates to a human birth-death ratio of 2.35 annually. The 2007 Red List prepared by the International Union for Conservation of Nature and Natural Resources (IUCN) categorized 16,306 species of vertebrates, invertebrates, plants, and other organisms (e.g., lichens, algae) as TS. This is ~ 1 percent of the 1,589,161 species described by IUCN or ~ 0.0033 percent of the believed 5,000,000 total species. Of the IUCN’s described species, vertebrates comprised relatively the most TS listings within respective taxonomic categories (5,742 of 59,811), while invertebrates (2,108 of 1,203,175), plants (8,447 of 297,326), and other species (9 of 28,849) accounted for minor class percentages. Conservation economics comprises microeconomic and macroeconomic principles involving interactions among ecological, environmental, and natural resource economics. A sustainable-growth (steady-state) economy has been posited as instrumental to preserving biological diversity and slowing extinctions in the wild, but few nations endorse this approach. Expanding growth principles characterize most nations' economic policies. To date, statutory fine, captive breeding cost, contingent valuation analysis, hedonic pricing, and travel cost methods are used to value TS in economic research and models. Improved valuation methods of TS are needed for benefit-cost analysis (BCA) of conservation plans. This Chapter provides a review and analysis of: (1) the IUCN status of species, (2) economic principles inherent to sustainable versus growth economies, and (3) methodological issues which hinder effective BCAs of TS conservation.
Resumo:
A comprehensive new inventory of Brazilian plants and fungi was published just in time to meet a 2010 Convention on Biological Diversity target and offers important insights into this biodiversity's global significance. Brazil is the home to the world's richest flora (40,989 species; 18,932 endemic) and includes two of the hottest hotspots: Mata Atlantica (19,355 species) and Cerrado (12,669 species). Although the total number of known species is one-third lower than previous estimates, the absolute number of endemic vascular plant species is higher than was previously estimated, and the proportion of endemism (56%) is the highest in the Neotropics. This compilation serves not merely to quantify the scale of the challenge faced in conserving Brazil's unique flora but also serves as a key resource to direct action and monitor progress. Similar efforts by other megadiverse countries are urgently required if the 2020 targets of the Convention on Biological Diversity and the Global Strategy for Plant Conservation are to be attained.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
Biological diversity is threatened worldwide and it is a priority to generate more information that can be used both for understanding ecological processes and determining conservation strategies. For my dissertation, I focused on amphibian diversity patterns in lowland rainforests of southwestern Amazonia to evaluate the importance of habitat heterogeneity in the region. My main purpose was to test the hypothesis that amphibian communities in different forest types differ in species richness, composition, and abundance. I used standardized visual encounter surveys to quantify the species composition and abundance of amphibians at four sites, each containing four forest types (floodplain, terra firme, bamboo, and palm swamp). I used leaf-litter plots to evaluate the effect of soil and leaf-litter characteristics on species richness and abundance of leaf-litter frogs. I intensively sampled at one site and then sampled three other sites (distance among sites varied 3.5–105 km) to evaluate whether the patterns observed at one site were similar elsewhere. I also updated the information on threatened and potentially threatened amphibians in Peru and my study region. I found that no species appears to have experienced population declines in southeastern Peru, suggesting that the region still contains the original species pool. My results support the hypothesis that amphibian communities differ across forest types and that patterns observed at the local scale (one site) are similar at the regional scale (four sites). My data also indicate that there is no correlation between species composition and geographic distance among sites. Instead, an important proportion of the gamma diversity is represented by habitat-related beta diversity. My leaf-litter plot data showed that part of the variation in the leaf-litter community structure is explained by soil and litter characteristics. I found that soil total phosphorus and, to a lesser extent, humidity, leaf-litter mass, and pH is linked to species presence/absence and abundance. My study provides the first standardized, quantitative comparison of amphibian community structure across four major forest types in southwestern Amazonia and highlights the fact that forest types are complementary and necessary for maintaining high species richness in the region.
Resumo:
Biological diversity is threatened worldwide and it is a priority to generate more information that can be used both for understanding ecological processes and determining conservation strategies. For my dissertation, I focused on amphibian diversity patterns in lowland rainforests of southwestern Amazonia to evaluate the importance of habitat heterogeneity in the region. My main purpose was to test the hypothesis that amphibian communities in different forest types differ in species richness, composition, and abundance. I used standardized visual encounter surveys to quantify the species composition and abundance of amphibians at four sites, each containing four forest types (floodplain, terra firme, bamboo, and palm swamp). I used leaf-litter plots to evaluate the effect of soil and leaf-litter characteristics on species richness and abundance of leaf-litter frogs. I intensively sampled at one site and then sampled three other sites (distance among sites varied 3.5-105 km) to evaluate whether the patterns observed at one site were similar elsewhere. I also updated the information on threatened and potentially threatened amphibians in Peru and my study region. I found that no species appears to have experienced population declines in southeastern Peru, suggesting that the region still contains the original species pool. My results support the hypothesis that amphibian communities differ across forest types and that patterns observed at the local scale (one site) are similar at the regional scale (four sites). My data also indicate that there is no correlation between species composition and geographic distance among sites. Instead, an important proportion of the gamma diversity is represented by habitat-related beta diversity. My leaf-litter plot data showed that part of the variation in the leaf-litter community structure is explained by soil and litter characteristics. I found that soil total phosphorus and, to a lesser extent, humidity, leaf-litter mass, and pH is linked to species presence/absence and abundance. My study provides the first standardized, quantitative comparison of amphibian community structure across four major forest types in southwestern Amazonia and highlights the fact that forest types are complementary and necessary for maintaining high species richness in the region.
The non-timber forest products sector in nepal : policy issues in plant conservation and utilization
Resumo:
The non-timber forest products (NTFPs) sector in Nepal is being promoted with the concept of sustainable management as articulated by the Convention on Biological Diversity. To promote and regulate this sector, Nepal adopted the Herbs and NTFP Development Policy in 2004. The goal of this thesis was to assess the effectiveness of this policy along with other forestry and natural resource policies in Nepal concerning the conservation and sustainable use of NTFPs. I conducted open-ended semi-structured interviews with 28 key informants in summer 2006 in Nepal where I also collected relevant documents and publications. I did qualitative analysis of data obtained from interviews and document review. The research found many important issues that need to be addressed to promote the NTFP sector as envisioned by the Government of Nepal. The findings of this research will help to further implement the policy and promote the NTFP sector through sustainable management practices.