560 resultados para Biodegradation.
Resumo:
Poly (3-hydroxybutyrate) (PHB) films were biodegraded by DS9701. The degradation process was monitored by using SEM. It was shown that the PHB degradation occurred firstly in the amorphous part of PHB and then in the crystalline part, especially from the center of PHB spherulites. PHB deplymerase produced by DS9701 mainly attacked the second ester bond of PHB and the degraded product was dimmer, determined by using mass spectrometer.
Resumo:
Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A successful micronization of water-insoluble poly(epsilon-caprolactone) (PCL) into narrowly distributed nanoparticles stable in water has not only enabled us to study the enzymatic biodegradation of PCL in water at 25 degrees C by a combination of static and dynamic laser light scattering (LLS), but also to shorten the biodegradation time by a factor of more than 10(3) compared with using a thin PCL film, i.e. a 1 week conventional experiment becomes a 4 min one. The time-average scattering intensity decreased linearly. It was interesting to find that the decrease of the scattering intensity was not accompanied by a decrease of the average size of the PCL nanoparticles, indicating that the enzyme, Lipase Pseudomonas (PS), ''eats'' the PCL nanoparticles one-by-one, so that the biodegradation rate is determined mainly by the: enzyme concentration. Moreover, we found that using anionic sodium lauryl sulphate instead of cationic hexadecyltrimethylammonium bromide as surfactant in the micronization can prevent the biodegradation, suggesting that the biodegradation involves two essential steps: the adsorption of slightly negatively charged Lipase PS onto the PCL nanoparticles and the interaction between Lipase PS and PCL. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel combination of laser light scattering (LLS) and the micronization of a water-insoluble polymer into narrowly distributed nanoparticles stable in water has provided not only an accurate, reliable and microscopic method to study polymer biodegradation, but also a novel and fast way to evaluate the biodegradability of a given polymer. Using poly(epsilon-caprolactone) (PCL) as a typical example, we have shown that its biodegradation time can be shortened by a factor of more than 10(3) times in comparison with the time required to biodegrade a thin film (10 x 10 x 0.1 mm(3)). Moreover, the biodegradation kinetics can be in-situ monitored in terms of the decrease of the time-average scattering intensity and the particle number. A comparison of static and dynamic LLS results revealed that the enzyme, Lipase Pseudomonas, ''eats'' the PCL nanoparticles in an one-by-one manner and the enzymatic biodegradation of PCL follows a zero-order kinetics. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The genus Rhodococcus is a very diverse group of bacteria that possesses the ability to degrade a large number of organic compounds, including some of the most difficult compounds with regard to recalcitrance and toxicity. They achieve this through their capacity to acquire a remarkable range of diverse catabolic genes and their robust cellular physiology. Rhodococcus appear to have adopted a strategy of hyperrecombination associated with a large genome. Notably, they harbour large linear plasmids that contribute to their catabolic diversity by acting as 'mass storage' for a large number of catabolic genes. In addition, there is increasing evidence that multiple pathways and gene homologues are present that further increase the catabolic versatility and efficiency of Rhodococcus.
Resumo:
The acid anthraquinone dye Tectilon Blue (TB4R) is a major coloured component from the aqueous effluent of a carpet printing plant in Northern Ireland. The aerobic biodegradation of TB4R has been investigated experimentally in batch systems, using three strains of bacteria, namely, Bacillus gordonae (NCIMB 12553), Bacillus benzeovorans (NCIMB 12555) and Pseudomonas putida (NCIMB 9776). All three strains successfully decolourised the dye, and results were correlated using Michaelis-Menten kinetic theory. A recalculation of the reaction rate constants, to account for biosorption, gave an accurate simulation of the colour removal over a 24-h period. Up to 19% of the decolorisation was found to be caused by biosorption of the dye onto the biomass, with the majority of the decolorisation caused by utilisation of the dye by the bacteria. The reaction rate was found to be intermediate between zero and first order at dye concentrations of 200-1000 mg/l. (C) 2000 Elsevier Science Ltd. All rights reserved.