976 resultados para Biodegradation of cork
Resumo:
Films of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(propylene) (PP), PP/PHBV (4:1), blends were prepared by melt-pressing and investigated with respect to their microbial degradation in soil after 120 days. Biodegradation of the films was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The biodegradation and/or bioerosion of the PP/PHBV blend was attributed to microbiological attack, with major changes occurring at the interphases of the homopolymers. The PHBV film was more strongly biodegraded in soil, decomposing completely in 30 days, while PP film presented changes in amorphous and interface phase, which affected the morphology.
Resumo:
This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
This work aimed to assess the aerobic biodegradation of butanol/gasoline, blends (5; 10; 15 and 20% v/v), being the latter compared to the ethanol/gasoline blend (20% v/v). Two experimental techniques were employed, namely the respirometric method and the redox indicator DCPIP test. in the former, experiments simulating the contamination of natural environments (addition of 50 mL of fuel kg(-1) of soil from a non-contaminated site and 20 mL of fuel L(-1) of water from a river) were carried out in biometer flasks (250 mL), used to measure the microbial CO(2) production. The DCPIP test assessed the capability of four inocula to biodegrade the blends of 20%. The addition of butanol at different concentrations enhanced the biodegradation of gasoline in soil. However, no practical gains were observed for concentrations of butanol above 10%. Ethanol showed to have a much faster biodegradation rate than butanol, particularly in water, and the following order of biodegradability was found: ethanol > butanol > gasoline. The addition of the alcohols to the gasoline resulted in positive synergic effects on the biodegradation of the fuels in soil and water matrices. Furthermore, results suggest that, in soil, butanol better enhanced the biodegradation of gasoline than ethanol. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work is aimed to assess the aerobic biodegradation of biodiesel/diesel blends (0, 2, 5, 20 and 100%, v/v) by Candida viswanathii. The biodegradation potential of the inoculum was assessed with the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test and with respirometric experiment in biometer flasks (250 mL) used to measure the microbial CO(2) production. In the latter, the inoculum was added to a contaminated soil with the blends (addition of 50 mL of fuel/Kg of soil from a non-contaminated site). C. viswanathii was able to increase significantly (approximately 50% in terms of CO(2) production) the biodegradation in soil of biodiesel/diesel blends and neat biodiesel since it preferable biodegrades biodiesel. Without inoculum the biodegradation of diesel oil was higher than biodiesel and blends (47.3, 51.1, 5.7 and 22.1% in terms of CO(2) production by B2, B5, B20 and B100, respectively) presumably due to the presence of the antioxidant terc-butyl-hydroquinone (TBHQ) in the biodiesel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)