771 resultados para Biocid and corrosion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"NAVAIR 16-1-540."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion resistance is an important property that could be affected by the ageing process. In order to investigate whether aging affects the corrosion resistance, corrosion rate and yield strength of diecast magnesium alloy AZ91D were measured and analysed after ageing. It was found that the dependence of the corrosion rate on ageing time can be ascribed to the changes in microstructure of the alloy and chemical composition of its matrix. Precipitation of the P phase (Mg17Al12) occurred along the grain boundaries during the initial ageing stages, resulting in a decreasing corrosion rate and an inceasing yield strength. In the later stages, the decreasing aluminium content in the alpha matrix made it more active, causing an increase in the corrosion rate. The decrease in aluminium content in the matrix also leads to a decrease in yield strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biofilms microbial forms of association are responsible for generating, accelerating and / or induce the process of corrosion. The damage generated in the petroleum industry for this type of corrosion is significatives, representing major investment for your control. The aim of this study was to evaluate such tests antibiograms the effects of extracts of Jatropha curcas and essential oil of Lippia gracilis Schauer on microrganisms isolated from water samples and, thereafter, select the most effective natural product for further evaluation of biofilms formed in dynamic system. Extracts of J. curcas were not efficient on the complete inhibition of microbial growth in tests type antibiogram, and essential oil of L. gracilis Schauer most effective and determined for the other tests. A standard concentration of essential oil of 20 μL was chosen and established for the evaluation of the biofilms and the rate of corrosion. The biocide effect was determined by microbial counts of five types of microorganisms: aerobic bacteria, precipitating iron, total anaerobic, sulphate reducers (BRS) and fungi. The rate of corrosion was measured by loss of mass. Molecular identification and scanning electron microscopy (SEM) were performed. The data showed reduction to zero of the most probable number (MPN) of bacteria precipitating iron and BRS from 115 and 113 minutes of contact, respectively. There was also inhibited in fungi, reducing to zero the rate of colony-forming units (CFU) from 74 minutes of exposure. However, for aerobic and anaerobic bacteria there was no significant difference in the time of exposure to the essential oil, remaining constant. The rate of corrosion was also influenced by the presence of oil. The essential oil of L. gracilis was shown to be potentially effective

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biofilms microbial forms of association are responsible for generating, accelerating and / or induce the process of corrosion. The damage generated in the petroleum industry for this type of corrosion is significatives, representing major investment for your control. The aim of this study was to evaluate such tests antibiograms the effects of extracts of Jatropha curcas and essential oil of Lippia gracilis Schauer on microrganisms isolated from water samples and, thereafter, select the most effective natural product for further evaluation of biofilms formed in dynamic system. Extracts of J. curcas were not efficient on the complete inhibition of microbial growth in tests type antibiogram, and essential oil of L. gracilis Schauer most effective and determined for the other tests. A standard concentration of essential oil of 20 μL was chosen and established for the evaluation of the biofilms and the rate of corrosion. The biocide effect was determined by microbial counts of five types of microorganisms: aerobic bacteria, precipitating iron, total anaerobic, sulphate reducers (BRS) and fungi. The rate of corrosion was measured by loss of mass. Molecular identification and scanning electron microscopy (SEM) were performed. The data showed reduction to zero of the most probable number (MPN) of bacteria precipitating iron and BRS from 115 and 113 minutes of contact, respectively. There was also inhibited in fungi, reducing to zero the rate of colony-forming units (CFU) from 74 minutes of exposure. However, for aerobic and anaerobic bacteria there was no significant difference in the time of exposure to the essential oil, remaining constant. The rate of corrosion was also influenced by the presence of oil. The essential oil of L. gracilis was shown to be potentially effective

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorbent and corrosion resistant films are useful for sensor development. Therefore, the aim of this work is the production and characterization of plasma polymerized fluorinated organic ether thin films for sensor development. The polymerized reactant was methyl nonafluoro(iso)butyl ether. Infrared Spectroscopy showed fluorinated species and eventually CO but CH(n) is a minor species. Contact angle measurements indicated that the film is hydrophobic and organophilic but oleophobic. Optical microscopy reveals not only a good adherence on metals and acrylic but also resistance for organic solvents, acid and basic aqueous solution exposure. Double layer and intermixing are possible and might lead to island formation. Quartz Crystal Microbalance showed that 2-propanol permeates the film but there is no sensitivity to n-hexane. The microreactor manufactured using a 73 cm long microchannel can retain approximately 9 X 10(-4) g/cm(2) of 2-propanol in vapor phase. Therefore, the film is a good candidate for preconcentration of volatile organic compounds even in corrosive environment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Validated in vitro methods for skin corrosion and irritation were adopted by the OECD and by the European Union during the last decade. In the EU, Switzerland and countries adopting the EU legislation, these assays may allow the full replacement of animal testing for identifying and classifying compounds as skin corrosives, skin irritants, and non irritants. In order to develop harmonised recommendations on the use of in vitro data for regulatory assessment purposes within the European framework, a workshop was organized by the Swiss Federal Office of Public Health together with ECVAM and the BfR. It comprised stakeholders from various European countries involved in the process from in vitro testing to the regulatory assessment of in vitro data. Discussions addressed the following questions: (1) the information requirements considered useful for regulatory assessment; (2) the applicability of in vitro skin corrosion data to assign the corrosive subcategories as implemented by the EU Classification, Labelling and Packaging Regulation; (3) the applicability of testing strategies for determining skin corrosion and irritation hazards; and (4) the applicability of the adopted in vitro assays to test mixtures, preparations and dilutions. Overall, a number of agreements and recommendations were achieved in order to clarify and facilitate the assessment and use of in vitro data from regulatory accepted methods, and ultimately help regulators and scientists facing with the new in vitro approaches to evaluate skin irritation and corrosion hazards and risks without animal data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The bond strength of reinforcing bars is a complex interaction between localized deformations, chemical adhesion, and other factors. Coating of reinforcing bars, although sometimes debated, has been commonly found to be an effective way to delay the initiation of corrosion in reinforced concrete systems. For many years, the standard practice has been to coat reinforcing steel with an epoxy coating, which provides a barrier between the steel and the corrosive elements of water, air, and chloride ions. Recently, there has been an industry-led effort to use galvanizing to provide the protective barrier commonly provided by traditional epoxy coatings. However, as with any new structural product, questions exist regarding both the structural performance and corrosion resistance of the system. In the fall of 2013, Buchanan County, Iowa constructed a demonstration bridge in which the steel girders and all internal reinforcing steel were galvanized. The work completed in this project sought to understand the structural performance of galvanized reinforcing steel as compared to epoxy-coated steel and to initiate a long-term corrosion monitoring program. This work consisted of a series of controlled laboratory tests and the installation of a corrosion monitoring system that can be observed for years in the future. The results of this work indicate there is no appreciable difference between the bond strength of epoxy-coated reinforcing steel and galvanized reinforcing steel. Although some differences were observed, no notable difference in either peak load, slip, or failure mode could be identified. Additionally, a long-term monitoring system was installed in this Buchanan County bridge and, to date, no corrosion activity has been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion of reinforcing steel in concrete due to chloride ingress is one of the main causes of the deterioration of reinforced concrete structures. Structures most affected by such a corrosion are marine zone buildings and structures exposed to de-icing salts like highways and bridges. Such process is accompanied by an increase in volume of the corrosión products on the rebarsconcrete interface. Depending on the level of oxidation, iron can expand as much as six times its original volume. This increase in volume exerts tensile stresses in the surrounding concrete which result in cracking and spalling of the concrete cover if the concrete tensile strength is exceeded. The mechanism by which steel embedded in concrete corrodes in presence of chloride is the local breakdown of the passive layer formed in the highly alkaline condition of the concrete. It is assumed that corrosion initiates when a critical chloride content reaches the rebar surface. The mathematical formulation idealized the corrosion sequence as a two-stage process: an initiation stage, during which chloride ions penetrate to the reinforcing steel surface and depassivate it, and a propagation stage, in which active corrosion takes place until cracking of the concrete cover has occurred. The aim of this research is to develop computer tools to evaluate the duration of the service life of reinforced concrete structures, considering both the initiation and propagation periods. Such tools must offer a friendly interface to facilitate its use by the researchers even though their background is not in numerical simulation. For the evaluation of the initiation period different tools have been developed: Program TavProbabilidade: provides means to carry out a probability analysis of a chloride ingress model. Such a tool is necessary due to the lack of data and general uncertainties associated with the phenomenon of the chloride diffusion. It differs from the deterministic approach because it computes not just a chloride profile at a certain age, but a range of chloride profiles for each probability or occurrence. Program TavProbabilidade_Fiabilidade: carries out reliability analyses of the initiation period. It takes into account the critical value of the chloride concentration on the steel that causes breakdown of the passive layer and the beginning of the propagation stage. It differs from the deterministic analysis in that it does not predict if the corrosion is going to begin or not, but to quantifies the probability of corrosion initiation. Program TavDif_1D: was created to do a one dimension deterministic analysis of the chloride diffusion process by the finite element method (FEM) which numerically solves Fick’second Law. Despite of the different FEM solver already developed in one dimension, the decision to create a new code (TavDif_1D) was taken because of the need to have a solver with friendly interface for pre- and post-process according to the need of IETCC. An innovative tool was also developed with a systematic method devised to compare the ability of the different 1D models to predict the actual evolution of chloride ingress based on experimental measurements, and also to quantify the degree of agreement of the models with each others. For the evaluation of the entire service life of the structure: a computer program has been developed using finite elements method to do the coupling of both service life periods: initiation and propagation. The program for 2D (TavDif_2D) allows the complementary use of two external programs in a unique friendly interface: • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. This program (TavDif_2D) is responsible to decide in each time step when and where to start applying the boundary conditions of fracture mechanics module in function of the amount of chloride concentration and corrosion parameters (Icorr, etc). This program is also responsible to verify the presence and the degree of fracture in each element to send the Information of diffusion coefficient variation with the crack width. • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. The advantages of the FEM with the interface provided by the tool are: • the flexibility to input the data such as material property and boundary conditions as time dependent function. • the flexibility to predict the chloride concentration profile for different geometries. • the possibility to couple chloride diffusion (initiation stage) with chemical and mechanical behavior (propagation stage). The OOFEM code had to be modified to accept temperature, humidity and the time dependent values for the material properties, which is necessary to adequately describe the environmental variations. A 3-D simulation has been performed to simulate the behavior of the beam on both, action of the external load and the internal load caused by the corrosion products, using elements of imbedded fracture in order to plot the curve of the deflection of the central region of the beam versus the external load to compare with the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La corrosión del acero es una de las patologías más importantes que afectan a las estructuras de hormigón armado que están expuestas a ambientes marinos o al ataque de sales fundentes. Cuando se produce corrosión, se genera una capa de óxido alrededor de la superficie de las armaduras, que ocupa un volumen mayor que el acero inicial; como consecuencia, el óxido ejerce presiones internas en el hormigón circundante, que lleva a la fisuración y, ocasionalmente, al desprendimiento del recubrimiento de hormigón. Durante los últimos años, numerosos estudios han contribuido a ampliar el conocimiento sobre el proceso de fisuración; sin embargo, aún existen muchas incertidumbres respecto al comportamiento mecánico de la capa de óxido, que es fundamental para predecir la fisuración. Por ello, en esta tesis se ha desarrollado y aplicado una metodología, para mejorar el conocimiento respecto al comportamiento del sistema acero-óxido-hormigón, combinando experimentos y simulaciones numéricas. Se han realizado ensayos de corrosión acelerada en condiciones de laboratorio, utilizando la técnica de corriente impresa. Con el objetivo de obtener información cercana a la capa de acero, como muestras se seleccionaron prismas de hormigón con un tubo de acero liso como armadura, que se diseñaron para conseguir la formación de una única fisura principal en el recubrimiento. Durante los ensayos, las muestras se equiparon con instrumentos especialmente diseñados para medir la variación de diámetro y volumen interior de los tubos, y se midió la apertura de la fisura principal utilizando un extensómetro comercial, adaptado a la geometría de las muestras. Las condiciones de contorno se diseñaron cuidadosamente para que los campos de corriente y deformación fuesen planos durante los ensayos, resultando en corrosión uniforme a lo largo del tubo, para poder reproducir los ensayos en simulaciones numéricas. Se ensayaron series con varias densidades de corriente y varias profundidades de corrosión. De manera complementaria, el comportamiento en fractura del hormigón se caracterizó en ensayos independientes, y se midió la pérdida gravimétrica de los tubos siguiendo procedimientos estándar. En todos los ensayos, la fisura principal creció muy despacio durante las primeras micras de profundidad de corrosión, pero después de una cierta profundidad crítica, la fisura se desarrolló completamente, con un aumento rápido de su apertura; la densidad de corriente influye en la profundidad de corrosión crítica. Las variaciones de diámetro interior y de volumen interior de los tubos mostraron tendencias diferentes entre sí, lo que indica que la deformación del tubo no fue uniforme. Después de la corrosión acelerada, las muestras se cortaron en rebanadas, que se utilizaron en ensayos post-corrosión. El patrón de fisuración se estudió a lo largo del tubo, en rebanadas que se impregnaron en vacío con resina y fluoresceína para mejorar la visibilidad de las fisuras bajo luz ultravioleta, y se estudió la presencia de óxido dentro de las grietas. En todas las muestras, se formó una fisura principal en el recubrimiento, infiltrada con óxido, y varias fisuras secundarias finas alrededor del tubo; el número de fisuras varió con la profundidad de corrosión de las muestras. Para muestras con la misma corrosión, el número de fisuras y su posición fue diferente entre muestras y entre secciones de una misma muestra, debido a la heterogeneidad del hormigón. Finalmente, se investigó la adherencia entre el acero y el hormigón, utilizando un dispositivo diseñado para empujar el tubo en el hormigón. Las curvas de tensión frente a desplazamiento del tubo presentaron un pico marcado, seguido de un descenso constante; la profundidad de corrosión y la apertura de fisura de las muestras influyeron notablemente en la tensión residual del ensayo. Para simular la fisuración del hormigón causada por la corrosión de las armaduras, se programó un modelo numérico. Éste combina elementos finitos con fisura embebida adaptable que reproducen la fractura del hormigón conforme al modelo de fisura cohesiva estándar, y elementos de interfaz llamados elementos junta expansiva, que se programaron específicamente para reproducir la expansión volumétrica del óxido y que incorporan su comportamiento mecánico. En el elemento junta expansiva se implementó un fenómeno de despegue, concretamente de deslizamiento y separación, que resultó fundamental para obtener localización de fisuras adecuada, y que se consiguió con una fuerte reducción de la rigidez tangencial y la rigidez en tracción del óxido. Con este modelo, se realizaron simulaciones de los ensayos, utilizando modelos bidimensionales de las muestras con elementos finitos. Como datos para el comportamiento en fractura del hormigón, se utilizaron las propiedades determinadas en experimentos. Para el óxido, inicialmente se supuso un comportamiento fluido, con deslizamiento y separación casi perfectos. Después, se realizó un ajuste de los parámetros del elemento junta expansiva para reproducir los resultados experimentales. Se observó que variaciones en la rigidez normal del óxido apenas afectaban a los resultados, y que los demás parámetros apenas afectaban a la apertura de fisura; sin embargo, la deformación del tubo resultó ser muy sensible a variaciones en los parámetros del óxido, debido a la flexibilidad de la pared de los tubos, lo que resultó fundamental para determinar indirectamente los valores de los parámetros constitutivos del óxido. Finalmente, se realizaron simulaciones definitivas de los ensayos. El modelo reprodujo la profundidad de corrosión crítica y el comportamiento final de las curvas experimentales; se comprobó que la variación de diámetro interior de los tubos está fuertemente influenciada por su posición relativa respecto a la fisura principal, en concordancia con los resultados experimentales. De la comparación de los resultados experimentales y numéricos, se pudo extraer información sobre las propiedades del óxido que de otra manera no habría podido obtenerse. Corrosion of steel is one of the main pathologies affecting reinforced concrete structures exposed to marine environments or to molten salt. When corrosion occurs, an oxide layer develops around the reinforcement surface, which occupies a greater volume than the initial steel; thus, it induces internal pressure on the surrounding concrete that leads to cracking and, eventually, to full-spalling of the concrete cover. During the last years much effort has been devoted to understand the process of cracking; however, there is still a lack of knowledge regarding the mechanical behavior of the oxide layer, which is essential in the prediction of cracking. Thus, a methodology has been developed and applied in this thesis to gain further understanding of the behavior of the steel-oxide-concrete system, combining experiments and numerical simulations. Accelerated corrosion tests were carried out in laboratory conditions, using the impressed current technique. To get experimental information close to the oxide layer, concrete prisms with a smooth steel tube as reinforcement were selected as specimens, which were designed to get a single main crack across the cover. During the tests, the specimens were equipped with instruments that were specially designed to measure the variation of inner diameter and volume of the tubes, and the width of the main crack was recorded using a commercial extensometer that was adapted to the geometry of the specimens. The boundary conditions were carefully designed so that plane current and strain fields were expected during the tests, resulting in nearly uniform corrosion along the length of the tube, so that the tests could be reproduced in numerical simulations. Series of tests were carried out with various current densities and corrosion depths. Complementarily, the fracture behavior of concrete was characterized in independent tests, and the gravimetric loss of the steel tubes was determined by standard means. In all the tests, the main crack grew very slowly during the first microns of corrosion depth, but after a critical corrosion depth it fully developed and opened faster; the current density influenced the critical corrosion depth. The variation of inner diameter and inner volume of the tubes had different trends, which indicates that the deformation of the tube was not uniform. After accelerated corrosion, the specimens were cut into slices, which were used in post-corrosion tests. The pattern of cracking along the reinforcement was investigated in slices that were impregnated under vacuum with resin containing fluorescein to enhance the visibility of cracks under ultraviolet lightening and a study was carried out to assess the presence of oxide into the cracks. In all the specimens, a main crack developed through the concrete cover, which was infiltrated with oxide, and several thin secondary cracks around the reinforcement; the number of cracks diminished with the corrosion depth of the specimen. For specimens with the same corrosion, the number of cracks and their position varied from one specimen to another and between cross-sections of a given specimen, due to the heterogeneity of concrete. Finally, the bond between the steel and the concrete was investigated, using a device designed to push the tubes of steel in the concrete. The curves of stress versus displacement of the tube presented a marked peak, followed by a steady descent, with notably influence of the corrosion depth and the crack width on the residual stress. To simulate cracking of concrete due to corrosion of the reinforcement, a numerical model was implemented. It combines finite elements with an embedded adaptable crack that reproduces cracking of concrete according to the basic cohesive model, and interface elements so-called expansive joint elements, which were specially designed to reproduce the volumetric expansion of oxide and incorporate its mechanical behavior. In the expansive joint element, a debonding effect was implemented consisting of sliding and separation, which was proved to be essential to achieve proper localization of cracks, and was achieved by strongly reducing the shear and the tensile stiffnesses of the oxide. With that model, simulations of the accelerated corrosion tests were carried out on 2- dimensional finite element models of the specimens. For the fracture behavior of concrete, the properties experimentally determined were used as input. For the oxide, initially a fluidlike behavior was assumed with nearly perfect sliding and separation; then the parameters of the expansive joint element were modified to fit the experimental results. Changes in the bulk modulus of the oxide barely affected the results and changes in the remaining parameters had a moderate effect on the predicted crack width; however, the deformation of the tube was very sensitive to variations in the parameters of oxide, due to the flexibility of the tube wall, which was crucial for indirect determination of the constitutive parameters of oxide. Finally, definitive simulations of the tests were carried out. The model reproduced the critical corrosion depth and the final behavior of the experimental curves; it was assessed that the variation of inner diameter of the tubes is highly influenced by its relative position with respect to the main crack, in accordance with the experimental observations. From the comparison of the experimental and numerical results, some properties of the mechanical behavior of the oxide were disclosed that otherwise could not have been measured.