920 resultados para Binary integer programming
Resumo:
One of the most widely studied protein structure prediction models is the hydrophobic-hydrophilic (HP) model, which explains the hydrophobic interaction and tries to maximize the number of contacts among hydrophobic amino-acids. In order to find a lower bound for the number of contacts, a number of heuristics have been proposed, but finding the optimal solution is still a challenge. In this research, we focus on creating a new integer programming model which is capable to provide tractable input for mixed-integer programming solvers, is general enough and allows relaxation with provable good upper bounds. Computational experiments using benchmark problems show that our formulation achieves these goals.
Resumo:
We present an IP-based nonparametric (revealed preference) testing procedure for rational consumption behavior in terms of general collective models, which include consumption externalities and public consumption. An empirical application to data drawn from the Russia Longitudinal Monitoring Survey (RLMS) demonstrates the practical usefulness of the procedure. Finally, we present extensions of the testing procedure to evaluate the goodness-of- t of the collective model subject to testing, and to quantify and improve the power of the corresponding collective rationality tests.
Resumo:
Policy and decision makers dealing with environmental conservation and land use planning often require identifying potential sites for contributing to minimize sediment flow reaching riverbeds. This is the case of reforestation initiatives, which can have sediment flow minimization among their objectives. This paper proposes an Integer Programming (IP) formulation and a Heuristic solution method for selecting a predefined number of locations to be reforested in order to minimize sediment load at a given outlet in a watershed. Although the core structure of both methods can be applied for different sorts of flow, the formulations are targeted to minimization of sediment delivery. The proposed approaches make use of a Single Flow Direction (SFD) raster map covering the watershed in order to construct a tree structure so that the outlet cell corresponds to the root node in the tree. The results obtained with both approaches are in agreement with expert assessments of erosion levels, slopes and distances to the riverbeds, which in turn allows concluding that this approach is suitable for minimizing sediment flow. Since the results obtained with the IP formulation are the same as the ones obtained with the Heuristic approach, an optimality proof is included in the present work. Taking into consideration that the heuristic requires much less computation time, this solution method is more suitable to be applied in large sized problems.
Resumo:
O presente trabalho foi realizado com o intuito de resolver o problema de alocação de vigilantes a exames do Instituto Superior de Engenharia do Porto, no departamento de Engenharia Mecânica. O modelo apresentado faz a atribuição das vigilâncias de uma forma hierárquica, utilizando vários critérios, desde a regência da unidade curricular até à simples vigilância. Devido ao facto de estar implementado informaticamente, apresenta reduzidos tempos na formulação e obtenção de uma solução, o que o torna uma boa ferramenta para a criação de cenários alternativos. Em suma, o modelo proposto neste trabalho apresenta soluções de melhor qualidade, em que a distribuição de afetações é proporcional entre os docentes, e o seu tempo de obtenção é muito reduzido em comparação com a alternativa atual.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Purpose – A binary integer programming model for the simple assembly line balancing problem (SALBP), which is well known as SALBP-1, was formulated more than 30 years ago. Since then, a number of researchers have extended the model for the variants of assembly line balancing problem.The model is still prevalent nowadays mainly because of the lower and upper bounds on task assignment. These properties avoid significant increase of decision variables. The purpose of this paper is to use an example to show that the model may lead to a confusing solution. Design/methodology/approach – The paper provides a remedial constraint set for the model to rectify the disordered sequence problem. Findings – The paper presents proof that the assembly line balancing model formulated by Patterson and Albracht may lead to a confusing solution. Originality/value – No one previously has found that the commonly used model is incorrect.
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
In this paper the low autocorrelation binary sequence problem (LABSP) is modeled as a mixed integer quadratic programming (MIQP) problem and proof of the model’s validity is given. Since the MIQP model is semidefinite, general optimization solvers can be used, and converge in a finite number of iterations. The experimental results show that IQP solvers, based on this MIQP formulation, are capable of optimally solving general/skew-symmetric LABSP instances of up to 30/51 elements in a moderate time. ACM Computing Classification System (1998): G.1.6, I.2.8.
Resumo:
We introduce a problem called maximum common characters in blocks (MCCB), which arises in applications of approximate string comparison, particularly in the unification of possibly erroneous textual data coming from different sources. We show that this problem is NP-complete, but can nevertheless be solved satisfactorily using integer linear programming for instances of practical interest. Two integer linear formulations are proposed and compared in terms of their linear relaxations. We also compare the results of the approximate matching with other known measures such as the Levenshtein (edit) distance. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sequence problems belong to the most challenging interdisciplinary topics of the actuality. They are ubiquitous in science and daily life and occur, for example, in form of DNA sequences encoding all information of an organism, as a text (natural or formal) or in form of a computer program. Therefore, sequence problems occur in many variations in computational biology (drug development), coding theory, data compression, quantitative and computational linguistics (e.g. machine translation). In recent years appeared some proposals to formulate sequence problems like the closest string problem (CSP) and the farthest string problem (FSP) as an Integer Linear Programming Problem (ILPP). In the present talk we present a general novel approach to reduce the size of the ILPP by grouping isomorphous columns of the string matrix together. The approach is of practical use, since the solution of sequence problems is very time consuming, in particular when the sequences are long.