924 resultados para Bias-corrected bootstrap
Resumo:
This paper introduces a framework for analysis of cross-sectional dependence in the idiosyncratic volatilities of assets using high frequency data. We first consider the estimation of standard measures of dependence in the idiosyncratic volatilities such as covariances and correlations. Next, we study an idiosyncratic volatility factor model, in which we decompose the co-movements in idiosyncratic volatilities into two parts: those related to factors such as the market volatility, and the residual co-movements. When using high frequency data, naive estimators of all of the above measures are biased due to the estimation errors in idiosyncratic volatility. We provide bias-corrected estimators and establish their asymptotic properties. We apply our estimators to high-frequency data on 27 individual stocks from nine different sectors, and document strong cross-sectional dependence in their idiosyncratic volatilities. We also find that on average 74% of this dependence can be explained by the market volatility.
Resumo:
Two simple and frequently used capture–recapture estimates of the population size are compared: Chao's lower-bound estimate and Zelterman's estimate allowing for contaminated distributions. In the Poisson case it is shown that if there are only counts of ones and twos, the estimator of Zelterman is always bounded above by Chao's estimator. If counts larger than two exist, the estimator of Zelterman is becoming larger than that of Chao's, if only the ratio of the frequencies of counts of twos and ones is small enough. A similar analysis is provided for the binomial case. For a two-component mixture of Poisson distributions the asymptotic bias of both estimators is derived and it is shown that the Zelterman estimator can experience large overestimation bias. A modified Zelterman estimator is suggested and also the bias-corrected version of Chao's estimator is considered. All four estimators are compared in a simulation study.
Resumo:
This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.
Resumo:
Two simple and frequently used capture–recapture estimates of the population size are compared: Chao's lower-bound estimate and Zelterman's estimate allowing for contaminated distributions. In the Poisson case it is shown that if there are only counts of ones and twos, the estimator of Zelterman is always bounded above by Chao's estimator. If counts larger than two exist, the estimator of Zelterman is becoming larger than that of Chao's, if only the ratio of the frequencies of counts of twos and ones is small enough. A similar analysis is provided for the binomial case. For a two-component mixture of Poisson distributions the asymptotic bias of both estimators is derived and it is shown that the Zelterman estimator can experience large overestimation bias. A modified Zelterman estimator is suggested and also the bias-corrected version of Chao's estimator is considered. All four estimators are compared in a simulation study.
Resumo:
This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.
Resumo:
As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configuration accounted for uncertainty in climate, planting date, optimization, temperature-induced changes in development rate and reproduction. It also accounts for lethal temperatures, which have been somewhat neglected to date. Using uncertainty decomposition, we found that fractional uncertainty due to temperature-driven processes in the crop model was on average larger than climate model uncertainty (0.56 versus 0.44), and that the crop model uncertainty is dominated by crop development. Simulations with the raw compared to the bias-corrected climate data did not agree on the impact on future wheat yield, nor its geographical distribution. However the method of bias-correction was not an important source of uncertainty. We conclude that bias-correction of climate model data and improved constraints on especially crop development are critical for robust impact predictions.
Resumo:
Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.
Resumo:
Future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Inter-comparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed for differences between impact models. Projections of change from a baseline period (1981-2010) to the future (2070-2099) from 12 impacts models which contributed to the hydrological and biomes sectors of ISI-MIP were studied. The biome models differed from the hydrological models by the inclusion of CO2 impacts and most also included a dynamic vegetation distribution. The biome and hydrological models agreed on the sign of runoff change for most regions of the world. However, in West Africa, the hydrological models projected drying, and the biome models a moistening. The biome models tended to produce larger increases and smaller decreases in regionally averaged runoff than the hydrological models, although there is large inter-model spread. The timing of runoff change was similar, but there were differences in magnitude, particularly at peak runoff. The impact of vegetation distribution change was much smaller than the projected change over time, while elevated CO2 had an effect as large as the magnitude of change over time projected by some models in some regions. The effect of CO2 on runoff was not consistent across the models, with two models showing increases and two decreases. There was also more spread in projections from the runs with elevated CO2 than with constant CO2. The biome models which gave increased runoff from elevated CO2 were also those which differed most from the hydrological models. Spatially, regions with most difference between model types tended to be projected to have most effect from elevated CO2, and seasonal differences were also similar, so elevated CO2 can partly explain the differences between hydrological and biome model runoff change projections. Therefore, this shows that a range of impact models should be considered to give the full range of uncertainty in impacts studies.
Resumo:
We introduce, for the first time, a new class of Birnbaum-Saunders nonlinear regression models potentially useful in lifetime data analysis. The class generalizes the regression model described by Rieck and Nedelman [Rieck, J.R., Nedelman, J.R., 1991. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33, 51-60]. We discuss maximum-likelihood estimation for the parameters of the model, and derive closed-form expressions for the second-order biases of these estimates. Our formulae are easily computed as ordinary linear regressions and are then used to define bias corrected maximum-likelihood estimates. Some simulation results show that the bias correction scheme yields nearly unbiased estimates without increasing the mean squared errors. Two empirical applications are analysed and discussed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
The heteroskedasticity-consistent covariance matrix estimator proposed by White (1980), also known as HC0, is commonly used in practical applications and is implemented into a number of statistical software. Cribari–Neto, Ferrari & Cordeiro (2000) have developed a bias-adjustment scheme that delivers bias-corrected White estimators. There are several variants of the original White estimator that also commonly used by practitioners. These include the HC1, HC2 and HC3 estimators, which have proven to have superior small-sample behavior relative to White’s estimator. This paper defines a general bias-correction mechamism that can be applied not only to White’s estimator, but to variants of this estimator as well, such as HC1, HC2 and HC3. Numerical evidence on the usefulness of the proposed corrections is also presented. Overall, the results favor the sequence of improved HC2 estimators.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To assess the relationship among Type D personality, self-efficacy, and medication adherence in patients with coronary heart disease. Methods: The study design was prospective and observational. Type D personality, self-efficacy for illness management behaviors, and medication adherence were measured 3 weeks after hospitalization for acute coronary syndrome in 165 patients (mean [standard deviation] age = 61.62 [10.61] years, 16% women). Self-reported medication adherence was measured 6 months later in 118 of these patients. Multiple linear regression and mediation analyses were used to address the study research questions. Results: Using the original categorical classification, 30% of patients with acute coronary syndrome were classified as having Type D personality. Categorically defined patients with Type D personality had significantly poorer medication adherence at 6 months (r = j0.29, p G .01). Negative affectivity (NA; r = j0.25, p = .01) and social inhibition (r = j0.19, p = .04), the components of Type D personality, were associated with medication adherence 6 months after discharge in bivariate analyses. There was no evidence for the interaction of NA and social inhibition, that is, Type D personality, in the prediction of medication adherence 6 months after discharge in multivariate analysis. The observed association between NA and medication adherence 6 months after discharge could be partly explained by indirect effects through self-efficacy in mediation analysis (coefficient = j0.012; 95% bias-corrected and accelerated confidence interval = j0.036 to j0.001). Conclusions: The present data suggest the primacy of NA over the Type D personality construct in predicting medication adherence. Lower levels of self-efficacy may be a mediator between higher levels of NA and poor adherence to medication in patients with coronary heart disease.
Resumo:
Back ground and Purpose. There is a growing consensus among health care researchers that Quality of Life (QoL) is an important outcome and, within the field of family caregiving, cost effectiveness research is needed to determine which programs have the greatest benefit for family members. This study uses a multidimensional approach to measure the cost effectiveness of a multicomponent intervention designed to improve the quality of life of spousal caregivers of stroke survivors. Methods. The CAReS study (Committed to Assisting with Recovery after Stroke) was a 5-year prospective, longitudinal intervention study for 159 stroke survivors and their spousal caregivers upon discharge of the stroke survivor from inpatient rehabilitation to their home. CAReS cost data were analyzed to determine the incremental cost of the intervention per caregiver. The mean values of the quality-of-life predictor variables of the intervention group of caregivers were compared to the mean values of usual care groups found in the literature. Significant differences were then divided into the cost of the intervention per caregiver to calculate the incremental cost effectiveness ratio for each predictor variable. Results. The cost of the intervention per caregiver was approximately $2,500. Statistically significant differences were found between the mean scores for the Perceived Stress and Satisfaction with Life scales. Statistically significant differences were not found between the mean scores for the Self Reported Health Status, Mutuality, and Preparedness scales. Conclusions. This study provides a prototype cost effectiveness analysis on which researchers can build. Using a multidimensional approach to measure QoL, as used in this analysis, incorporates both the subjective and objective components of QoL. Some of the QoL predictor variable scores were significantly different between the intervention and comparison groups, indicating a significant impact of the intervention. The estimated cost of the impact was also examined. In future studies, a scale that takes into account both the dimensions and the weighting each person places on the dimensions of QoL should be used to provide a single QoL score per participant. With participant level cost and outcome data, uncertainty around each cost-effectiveness ratio can be calculated using the bias-corrected percentile bootstrapping method and plotted to calculate the cost-effectiveness acceptability curves.^
Resumo:
An important step to assess water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimise the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of natural runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behaviour of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evapotranspiration and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the “best estimator” of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber (1904) also gives good results
Resumo:
Esta Tesis realiza una contribución metodológica al estudio del impacto del cambio climático sobre los usos del agua, centrándose particularmente en la agricultura. Tomando en consideración su naturaleza distinta, la metodología aborda de forma integral los impactos sobre la agricultura de secano y la agricultura de regadío. Para ello incorpora diferentes modelos agrícolas y de agua que conjuntamente con las simulaciones de los escenarios climáticos permiten determinar indicadores de impacto basados en la productividad de los cultivos, para el caso de la agricultura de secano, e indicadores de impacto basados en la disponibilidad de agua para irrigación, para el caso de la agricultura de regadío. La metodología toma en consideración el efecto de la variabilidad climática en la agricultura, evaluando las necesidades de adaptación y gestión asociadas a los impactos medios y a la variabilidad en la productividad de los cultivos y el efecto de la variabilidad hidrológica en la disponibilidad de agua para regadío. Considerando la gran cantidad de información proporcionada por las salidas de las simulaciones de los escenarios climáticos y su complejidad para procesarla, se ha desarrollado una herramienta de cálculo automatizada que integra diferentes escenarios climáticos, métodos y modelos que permiten abordar el impacto del cambio climático sobre la agricultura, a escala de grandes extensiones. El procedimiento metodológico parte del análisis de los escenarios climáticos en situación actual (1961-1990) y futura (2071-2100) para determinar su fiabilidad y conocer qué dicen exactamente las proyecciones climáticas a cerca de los impactos esperados en las principales variables que intervienen en el ciclo hidrológico. El análisis hidrológico se desarrolla en los ámbitos territoriales de la planificación hidrológica en España, considerando la disponibilidad de información para validar los resultados en escenario de control. Se utilizan como datos observados las series de escorrentía en régimen natural estimadas el modelo hidrológico SIMPA que está calibrado en la totalidad del territorio español. Al trabajar a escala de grandes extensiones, la limitada disponibilidad de datos o la falta de modelos hidrológicos correctamente calibrados para obtener los valores de escorrentía, muchas veces dificulta el proceso de evaluación, por tanto, en este estudio se plantea una metodología que compara diferentes métodos de interpolación y alternativas para generar series anuales de escorrentía que minimicen el sesgo con respecto a los valores observados. Así, en base a la alternativa que genera los mejores resultados, se obtienen series mensuales corregidas a partir de las simulaciones de los modelos climáticos regionales (MCR). Se comparan cuatro métodos de interpolación para obtener los valores de las variables a escala de cuenca hidrográfica, haciendo énfasis en la capacidad de cada método para reproducir los valores observados. Las alternativas utilizadas consideran la utilización de la escorrentía directa simulada por los MCR y la escorrentía media anual calculada utilizando cinco fórmulas climatológicas basadas en el índice de aridez. Los resultados se comparan además con la escorrentía global de referencia proporcionada por la UNH/GRDC que en la actualidad es el “mejor estimador” de la escorrentía actual a gran escala. El impacto del cambio climático en la agricultura de secano se evalúa considerando el efecto combinado de los riesgos asociados a las anomalías dadas por los cambios en la media y la variabilidad de la productividad de los cultivos en las regiones agroclimáticas de Europa. Este procedimiento facilita la determinación de las necesidades de adaptación y la identificación de los impactos regionales que deben ser abordados con mayor urgencia en función de los riesgos y oportunidades identificadas. Para ello se utilizan funciones regionales de productividad que han sido desarrolladas y calibradas en estudios previos en el ámbito europeo. Para el caso de la agricultura de regadío, se utiliza la disponibilidad de agua para irrigación como un indicador del impacto bajo escenarios de cambio climático. Considerando que la mayoría de estudios se han centrado en evaluar la disponibilidad de agua en régimen natural, en este trabajo se incorpora el efecto de las infraestructuras hidráulicas al momento de calcular el recurso disponible bajo escenarios de cambio climático Este análisis se desarrolla en el ámbito español considerando la disponibilidad de información, tanto de las aportaciones como de los modelos de explotación de los sistemas hidráulicos. Para ello se utiliza el modelo de gestión de recursos hídricos WAAPA (Water Availability and Adaptation Policy Assessment) que permite calcular la máxima demanda que puede atenderse bajo determinados criterios de garantía. Se utiliza las series mensuales de escorrentía observadas y las series mensuales de escorrentía corregidas por la metodología previamente planteada con el objeto de evaluar la disponibilidad de agua en escenario de control. Se construyen proyecciones climáticas utilizando los cambios en los valores medios y la variabilidad de las aportaciones simuladas por los MCR y también utilizando una fórmula climatológica basada en el índice de aridez. Se evalúan las necesidades de gestión en términos de la satisfacción de las demandas de agua para irrigación a través de la comparación entre la disponibilidad de agua en situación actual y la disponibilidad de agua bajo escenarios de cambio climático. Finalmente, mediante el desarrollo de una herramienta de cálculo que facilita el manejo y automatización de una gran cantidad de información compleja obtenida de las simulaciones de los MCR se obtiene un proceso metodológico que evalúa de forma integral el impacto del cambio climático sobre la agricultura a escala de grandes extensiones, y a la vez permite determinar las necesidades de adaptación y gestión en función de las prioridades identificadas. ABSTRACT This thesis presents a methodological contribution for studying the impact of climate change on water use, focusing particularly on agriculture. Taking into account the different nature of the agriculture, this methodology addresses the impacts on rainfed and irrigated agriculture, integrating agricultural and water planning models with climate change simulations scenarios in order to determine impact indicators based on crop productivity and water availability for irrigation, respectively. The methodology incorporates the effect of climate variability on agriculture, assessing adaptation and management needs associated with mean impacts, variability in crop productivity and the effect of hydrologic variability on water availability for irrigation. Considering the vast amount of information provided by the outputs of the regional climate model (RCM) simulations and also its complexity for processing it, a tool has been developed to integrate different climate scenarios, methods and models to address the impact of climate change on agriculture at large scale. Firstly, a hydrological analysis of the climate change scenarios is performed under current (1961-1990) and future (2071-2100) situation in order to know exactly what the models projections say about the expected impact on the main variables involved in the hydrological cycle. Due to the availability of information for validating the results in current situation, the hydrological analysis is developed in the territorial areas of water planning in Spain, where the values of naturalized runoff have been estimated by the hydrological model SIMPA, which are used as observed data. By working in large-scale studies, the limited availability of data or lack of properly calibrated hydrological model makes difficult to obtain runoff time series. So as, a methodology is proposed to compare different interpolation methods and alternatives to generate annual times series that minimize the bias with respect to observed values. Thus, the best alternative is selected in order to obtain bias-corrected monthly time series from the RCM simulations. Four interpolation methods for downscaling runoff to the basin scale from different RCM are compared with emphasis on the ability of each method to reproduce the observed behavior of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index. The results are also compared with the global runoff reference provided by the UNH/GRDC dataset, as a contrast of the “best estimator” of current runoff on a large scale. Secondly, the impact of climate change on rainfed agriculture is assessed considering the combined effect of the risks associated with anomalies given by changes in the mean and variability of crop productivity in the agro-climatic regions of Europe. This procedure allows determining adaptation needs based on the regional impacts that must be addressed with greater urgency in light of the risks and opportunities identified. Statistical models of productivity response are used for this purpose which have been developed and calibrated in previous European study. Thirdly, the impact of climate change on irrigated agriculture is evaluated considering the water availability for irrigation as an indicator of the impact. Given that most studies have focused on assessing water availability in natural regime, the effect of regulation is incorporated in this approach. The analysis is developed in the Spanish territory considering the available information of the observed stream flows and the regulation system. The Water Availability and Adaptation Policy Assessment (WAAPA) model is used in this study, which allows obtaining the maximum demand that could be supplied under certain conditions (demand seasonal distribution, water supply system management, and reliability criteria) for different policy alternatives. The monthly bias corrected time series obtained by previous methodology are used in order to assess water availability in current situation. Climate change projections are constructed taking into account the variation in mean and coefficient of variation simulated by the RCM. The management needs are determined by the agricultural demands satisfaction through the comparison between water availability under current conditions and under climate change projections. Therefore, the methodology allows evaluating the impact of climate change on agriculture to large scale, using a tool that facilitates the process of a large amount of complex information provided by the RCM simulations, in order to determine the adaptation and management needs in accordance with the priorities of the indentified impacts.