997 resultados para Beta-lactamase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the pharmacokinetics and therapeutic efficacy of ampicillin combined with sulbactam in a rabbit model of meningitis due to a beta-lactamase-producing strain of Escherichia coli K-1. Ceftriaxone was used as a comparison drug. The MIC and MBC were 32 and greater than 64 micrograms/ml (ampicillin), greater than 256 and greater than 256 micrograms/ml (sulbactam), 2.0 and 4.0 micrograms/ml (ampicillin-sulbactam [2:1 ratio, ampicillin concentration]) and 0.125 and 0.25 micrograms/ml (ceftriaxone). All antibiotics were given by intravenous bolus injection in a number of dosing regimens. Ampicillin and sulbactam achieved high concentrations in cerebrospinal fluid (CSF) with higher dose regimens, but only moderate bactericidal activity compared with that of ceftriaxone was obtained. CSF bacterial titers were reduced by 0.6 +/- 0.3 log10 CFU/ml/h with the highest ampicillin-sulbactam dose used (500 and 500 mg/kg of body weight, two doses). This was similar to the bactericidal activity achieved by low-dose ceftriaxone (10 mg/kg), while a higher ceftriaxone dose (100 mg/kg) produced a significant increase in bactericidal activity (1.1 +/- 0.4 log10 CFU/ml/h). It appears that ampicillin-sulbactam, despite favorable CSF pharmacokinetics in animals with meningitis, may be of limited value in the treatment of difficult-to-treat beta-lactamase-producing bacteria, against which the combination shows only moderate in vitro activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the pharmacokinetics and therapeutic efficacy of piperacillin combined with tazobactam, a novel beta-lactamase inhibitor, in experimental meningitis due to a beta-lactamase-producing strain of K1-positive Escherichia coli. Different doses of piperacillin and tazobactam, as single agents and combined (8:1 ratio; dosage range, 40/5 to 200/25 mg/kg per h), and of ceftriaxone were given to experimentally infected rabbits by intravenous bolus injection followed by a 5-h constant infusion. The mean (+/- standard deviation) rates for penetration into the cerebrospinal fluid of infected animals after coadministration of both drugs were 16.6 +/- 8.4% for piperacillin and 32.5 +/- 12.6% for tazobactam. Compared with either agent alone, combination treatment resulted in significantly better bactericidal activity in the cerebrospinal fluid. The bactericidal activity of piperacillin-tazobactam was dose dependent: cerebrospinal fluid bacterial titers were reduced by 0.37 +/- 0.19 log10 CFU/ml per h with the lowest dose versus 0.96 +/- 0.25 log10 CFU/ml per h with the highest dose (P less than 0.001). At the relatively high doses of 160/20 and 200/25 mg of piperacillin-tazobactam per kg per h, the bactericidal activity of the combination was comparable to that of 10 and 25 mg of ceftriaxone per kg per h, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasmid-encoded, constitutively produced $\beta$-lactamase gene from Enterococcus faecalis strain HH22 was genetically characterized. A restriction endonuclease map of the 5.1 kb EcoRI fragment encoding the enterococcal $\beta$-lactamase was prepared and compared with the restriction map of a cloned staphylococcal $\beta$-lactamase gene (from the naturally-occurring staphylococcal $\beta$-lactamase plasmid pI258). Comparison and hybridization studies showed that there were identical restriction sites in the region of the $\beta$-lactamase structural gene but not in the region surrounding this gene. Also the enterococcal $\beta$-lactamase plasmid did not encode resistance to mercury or cadmium which is encoded by the small, transducible staphylococcal $\beta$-lactamase plasmids. The nucleotide sequence of the enterococcal gene was shown to be identical to the published sequences of three of four staphylococcal type A $\beta$-lactamase genes; more differences were seen with the genes for staphylococcal type C and D enzymes. One hundred-forty nucleotides upstream of the $\beta$-lactamase start codon were also determined for the inducible staphylococcal $\beta$-lactamase gene on pI258; this sequence was identical to that of the constitutively expressed enterococcal gene indicating that the changes resulting in constitutive expression are not due to changes in the promoter or operator region. Moreover, complementation studies indicated that production of the enterococcal enzyme could be repressed. The gene for the enterococcal $\beta$-lactamase and an inducible staphylococcal $\beta$-lactamase were each cloned into a shuttle vector and then transformed into enterococcal and staphylococcal recipients. The major difference between the two host backgrounds was that more enzyme was produced by the staphylococcal host, regardless of the source of the gene but no qualitative difference was seen between the two genera. Also a difference in the level of resistance to ampicillin was seen between the two backgrounds with the cloned enzymes by MIC and time-kill studies. The location of the enzyme was found to be host dependent since each cloned gene generated extracellular (free) enzyme in the staphylococcus and cell bound enzyme in the enterococcus. Based on the identity of the enterococcal $\beta$-lactamase and several staphylococcal $\beta$-lactamases, these data suggest recent spread of $\beta$-lactamase to enterococci and also suggest loss of a functional repressor. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The susceptibility of most Bacillus anthracis strains to β-lactam antibiotics is intriguing considering that the B. anthracis genome harbors two β-lactamase genes, bla1 and bla2, and closely-related species, Bacillus cereus and Bacillus thuringiensis, typically produce β-lactamases. This work demonstrates that B. anthracis bla expression is affected by two genes, sigP and rsp, predicted to encode an extracytoplasmic function sigma factor and an antisigma factor, respectively. Deletion of the sigP/rsp locus abolished bla expression in a penicillin-resistant clinical isolate and had no effect on bla expression in a prototypical penicillin-susceptible strain. Complementation with sigP/rsp from the penicillin-resistant strain, but not the penicillin-susceptible strain, conferred β-lactamase activity upon both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsp in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsp homologues are required for inducible penicillin resistance in those species. Expression of the B. cereus or B. thuringiensis sigP and rsp genes in a B. anthracis sigP/rsp-null mutant confers resistance to β-lactam antibiotics, suggesting that while B. anthracis contains the genes necessary for sensing β-lactam antibiotics, the B. anthracis sigP/rsp gene products are insufficient for bla induction. ^ Because alternative sigma factors recognize unique promoter sequence, direct targets can be elucidated by comparing transcriptional profiling results with an in silico search using the sigma factor binding sequence. Potential σP -10 and -35 promoter elements were identified upstream from bla1 bla2 and sigP. Results obtained from searching the B. anthracis genome with the conserved sequences were evaluated against transcriptional profiling results comparing B. anthracis 32 and an isogenic sigP/rsp -null strain. Results from these analyses indicate that while the absence of the sigP gene significantly affects the transcript levels of 16 genes, only bla1, bla2 and sigP are directly regulated by σP. The genomes of B. cereus and B. thuringiensis strains were also analyzed for the potential σP binding elements. The sequence was located upstream from the sigP and bla genes, and previously unidentified genes predicted to encode a penicillin-binding protein (PBP) and a D-alanyl-D-alanine carboxypeptidase, indicating that the σ P regulon in these species responds to cell-wall stress caused by β-lactam antibiotics. ^ β-lactam antibiotics prevent attachment of new peptidoglycan to the cell wall by blocking the active site of PBPs. A B. cereus and B. thuringiensis pbp-encoding gene located near bla1 contains a potential σP recognition sequence upstream from the annotated translational start. Deletion of this gene abolished β-lactam resistance in both strains. Mutations in the active site of the PBP were detrimental to β-lactam resistance in B. cereus, but not B. thuringiensis, indicating that the transpeptidase activity is only important in B. cereus. I also found that transcript levels of the PBP-encoding gene are not significantly affected by the presence of β-lactam antibiotic. Based on these data I hypothesize that the gene product acts a sensor of β-lactam antibiotic. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli RTEM beta-lactamase reversibly forms a stable complex with GroEL, devoid of any enzymatic activity, at 48 degrees C. When beta-lactamase is diluted from this complex into denaturant solution, its unfolding rate is identical to that from the native state, while the unfolding rate from the molten globule state is too fast to be measured. Electrospray mass spectrometry shows that the rate of proton exchange in beta-lactamase in the complex at 48 degrees C is slower than in the absence of GroEL at the same temperature, and resembles the exchange of the native state at 25 degrees C. Similarly, the final number of protected deuterons is higher in the presence of GroEL than in its absence. We conclude that, for beta-lactamase, a state with significant native structure is bound to GroEL. Thus, different proteins are recognized by GroEL in very different states, ranging from totally unfolded to native-like, and this recognition may depend on which state can provide sufficient accessible hydrophobic amino acids in a suitably clustered arrangement. Reversible binding of native-like states with hydrophobic patches may be an important property of GroEL to protect the cell from aggregating protein after heat-shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel oxapenem compounds were evaluated for their ß-lactamase inhibitory and antibacterial properties. Two (AM-112 and AM-113) displayed intrinsic antibacterial activity with MICs of between 2 to 16µg/ml and 0.5-2µg/ml against Escherichia coli and methicillin-sensitive and -resistant Staphylococcus aureus, respectively. The isomers of these compounds, AM-115 and AM-114 did not display significant antibacterial activity. Combination of the oxapenems with ceftazidime afforded protection against ß-lactamase-producing strains, including hyperproducers of class C enzymes and extended-spectrum ß-lactamase enzymes. A fixed 4µg/ml concentration of AM-112 protected a panel of eight cephalosporins against hydrolysis by class A and class C ß-lactamase producers. In vivo studies confirmed the protective effect of AM-112 for ceftazidime against ß-lactamase producing S. aureus, Enterobacter cloacae and E. coli strains in a murine intraperitoneal infection model. Each of the oxapenems inhibited class A, class C and class D ß-lactamases isolated from whole cells and purified by isoelectric focusing. AM-114 and AM-115 were as effective as clavulanic acid against class A enzymes. AM-112 and AM-113 were less potent against these enzymes. Class C and class D enzymes proved very susceptible to inhibition by the oxapenems. Molecular modelling of the oxapenems in the active site of the class A. TEM-1 and class C P99 enzymes identified a number of potential sites of interaction. The modelling suggested that Ser-130 in TEM-1 and Tyr-150 in P99 were likely candidates for cross-linking of the inhibitor, leading to inhibition of the enzyme. Morphology studies indicated that sub-inhibitory concentrations of the oxapenems caused the formation of round-shaped cells in E. coli DC0, indicating inhibition of penicillin-binding protein 2 (PBP2). The PBP affinity profile of AM-112 was examined in isolated cell membranes of E. coli DC0, S. aureus NCTC 6571, Enterococcus faecalis SFZ and E. faecalis ATCC 29213, in competition with a radiolabelled penicillin. PBP2 was identified as the primary target for AM-112 in E. coli DC0. Studies on S. aureus NCTC 6571 failed to identify a binding target. AM-112 bound to all the PBPs of both E. faecalis strains, and a concentration of 10µg/ml inhibited all the PBPs except PBP3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotic resistance, production of alginate and virulence factors, and altered host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection. Failure of antibiotic therapy has been attributed to the emergence of P. aeruginosa strains that produce β-lactamase constitutively. In Enterobacteriaceae, β-lactamase induction involves four genes with known functions: ampC, ampR, ampD, and ampG, encoding the enzyme, transcriptional regulator, amidase and permease, respectively. In addition to all these amp genes, P. aeruginosa possesses two ampG paralogs, designated ampG and ampP. In this study, P. aeruginosa ampC, ampR, ampG and ampP were analyzed. Inactivation of ampC in the prototypic PAO1 failed to abolish the β-lactamase activity leading to the discovery of P. aeruginosa oxacillinase PoxB. Cloning and expression of poxB in Escherichia coli confers β-lactam resistance. Both AmpC and PoxB contribute to P. aeruginosa resistance against a wide spectrum of β-lactam antibiotics. The expression of PoxB and AmpC is regulated by a LysR-type transcriptional regulator AmpR that up-regulates AmpC but down-regulates PoxB activities. Analyses of P. aeruginosa ampR mutant demonstrate that AmpR is a global regulator that modulates the expressions of Las and Rhl quorum sensing (QS) systems, and the production of pyocyanin, LasA protease and LasB elastase. Introduction of the ampR mutation into an alginate-producing strain reveals the presence of a complex co-regulatory network between antibiotic resistance, QS alginate and other virulence factor production. Using phoA and lacZ protein fusion analyses, AmpR, AmpG and AmpP were localized to the inner membrane with one, 16 and 10 transmembrane helices, respectively. AmpR has a cytoplasmic DNA-binding and a periplasmic substrate binding domains. AmpG and AmpP are essential for the maximal expression of β-lactamase. Analysis of the murein breakdown products suggests that AmpG exports UDP-N-acetylmuramyl-L-alanine-γ-D-glutamate-meso-diaminopimelic acid-D-alanine-D-alanine (UDP-MurNAc-pentapeptide), the corepressor of AmpR, whereas AmpP imports N-acetylglucosaminyl-beta-1,4-anhydro-N-acetylmuramic acid-Ala-γ-D-Glu-meso-diaminopimelic acid (GlcNAc-anhMurNAc-tripeptide) and GlcNAc-anhMurNAc-pentapeptide, the co-inducers of AmpR. This study reveals a complex interaction between the Amp proteins and murein breakdown products involved in P. aeruginosa β-lactamase induction. In summary, this dissertation takes us a little closer to understanding the P. aeruginosa complex co-regulatory mechanism in the development of β-lactam resistance and establishment of chronic infection. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study analyzed resistance determinants in extended-spectrum beta-lactamase (ESBL)-producing enterobacteria and the epidemiology of 11 Escherichia coli isolates obtained from meningitis patients in a region of Brazil from 2000 to 2005. ESBL-encoding genes and their genetic environment were investigated by PCR and sequencing. The gene bla(CTX-M-2) was identified in 3 different enterobacteria (E. coli. Serratia marcescens, and Proteus mirabilis) downstream of the insertion sequence ISCR1 (localized in class 1 integrons), hut not as part of the resistance cassettes region. Multi locus sequence typing (MLST) was used to investigate genetic relationships between the 11 E. coil isolates in this study and strains associated with meningitis in the E. coil MLST database. MLST analysis indicated high genetic diversity among isolates, and no significant genetic relationship was identified with meningitis-causing E. coil in the database. The results in this report reinforce the need to be attentive to meningitis suspected to be due to ESBL-producing enterobacterial isolates, especially where ESBL epidemiology is well known.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Extended-spectrum beta-lactamases (ESBLs) are active against oxyimino cephalosporins and monobactams. Twenty-one Klebsiella pneumoniae isolates obtained between 1991 and 1995 at the Princess Alexandra Hospital in Brisbane, Australia, were subject to amplification and sequencing of the SHV beta-lactamase-encoding genes. Thirteen strains were phenotypically ESBL positive. Of these, six strains carried the bla(SHV-2a) gene and seven strains carried the bla(SHV-12) gene. Eight strains were phenotypically ESBL negative. Of these, seven strains carried the non-ESBL bla(SHV-11) gene and one strain carried the non-ESBL bla(SHV-1) gene. There was complete correspondence between the ESBL phenotype and the presence or absence of an ESBL-encoding gene(s). In addition, it was determined that of the 13 ESBL-positive strains, at least 4 carried copies of a non-ESBL-encoding gene in addition to the bla(SHV-2a) or bla(SHV12) gene. A minisequencing-based assay was developed to discriminate the different SHV classes. This technique, termed first-nucleotide change, involves the identification of the base added to a primer in a single-nucleotide extension reaction. The assay targeted polymorphisms at the first bases of codons 238 and 240 and reliably discriminated ESBL-positive strains from ESBL-negative strains and also distinguished strains carrying bla(SHV-2a) from strains carrying bla(SHV-12). In addition, this method was used to demonstrated an association between the relative copy numbers of bla(SHV) genes in individual strains and the levels of antibiotic resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A case-control study, involving patients with positive blood cultures for Klebsiella pneumoniae (KP) or Escherichia coli (EC) EC and controls with positive blood cultures for non-ESBL-KP or EC, was performed to assess risk factors for extended-spectrum-β-lactamase (ESBL) production from nosocomial bloodstream infections (BSIs). Mortality among patients with BSIs was also assessed. The study included 145 patients (81, 59.5% with K. pneumoniae and 64, 44.1% with E. coli BSI); 51 (35.2%) isolates were ESBL producers and 94 (64.8%) nonproducers. Forty-five (55.6%) K. pneumoniae isolates were ESBL producers, while only six (9.4%) E. coli isolates produced the enzyme. Multivariate analysis showed that recent exposure to piperacillin-tazobactam (adjusted Odds Ratio [aOR] 6.2; 95%CI 1.1-34.7) was a risk factor for ESBL BSI. K. pneumoniae was significantly more likely to be an ESBL-producing isolate than E. coli (aOR 6.7; 95%CI 2.3-20.2). No cephalosporin class was independently associated with ESBLs BSI; however, in a secondary model considering all oxymino-cephalosporins as a single variable, a significant association was demonstrated (aOR 3.7; 95%CI 1.3-10.8). Overall 60-day mortality was significantly higher among ESBL-producing organisms. The finding that piperacillin-tazobactam use is a risk factor for ESBL-production in KP or EC BSIs requires attention, since this drug can be recommended to limit the use of third-generation cephalosporins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introdução: A emergência de enterobacteriáceas produtoras de beta-lactamases de espectro alargado (ESBL) nos últimos anos representa um problema de saúde pública, escasseando alternativas eficazes para o seu tratamento. Vários trabalhos internacionais têm demonstrado uma sensibilidade in vitro muito elevada destas bactérias à fosfomicina, havendo alguns que testaram a eficácia clínica do tratamento de cistites agudas não complicadas no subgrupo das Escherichia coli com resultados promissores. No Hospital Prof. Dr. Fernando Fonseca EPE (HFF) tem havido um aumento anual progressivo do isolamento destes patogéneos. Os autores pretenderam testar a sensibilidade das enterobacteriáceas produtoras de ESBL à fosfomicina no HFF e averiguar o eventual potencial terapêutico. Material e métodos: Estudo prospectivo, durante 6 meses, no qual foi testada a sensibilidade à fosfomicina das enterobacteriáceas produtoras de ESBL isoladas. Foi utilizado o equipamento VITEK 2® para identificação das estirpes. A susceptibilidade à fosfomicina foi determinada através do método de difusão de disco (Oxoid®). O tratamento estatístico foi realizado através do programa Microsoft Excel®. Resultados: Foram identificadas 150 enterobacteriáceas ESBL, das quais 52% corresponderam a Klebsiella pneumoniae e 44% a Escherichia coli. Cerca de 88% das Escherichia coli e 68% das Klebsiella pneumoniae apresentaram sensibilidade à fosfomicina. Conclusões: De acordo com os dados obtidos a nível internacional e no nosso hospital, os autores recomendam a utilização da fosfomicina para tratamento de cistites agudas não complicadas provocadas por Escherichia coli produtoras de ESBL, sugerindo, concomitantemente, a realização de trabalhos futuros de eficácia clínica para consubstanciar esta prática e recomendação.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A ciprofloxacin-resistant Escherichia coli isolate, isolate 1B, was obtained from a urinary specimen of a Canadian patient treated with norfloxacin for infection due to a ciprofloxacin-susceptible isolate, isolate 1A. Both isolates harbored a plasmid-encoded sul1-type integron with qnrA1 and blaVEB-1 genes. Isolate 1B had amino acid substitutions in gyrase and topoisomerase.