964 resultados para Bernstein polynomials
Resumo:
We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of the domain.
Resumo:
Let H be a (real or complex) Hilbert space. Using spectral theory and properties of the Schatten–Von Neumann operators, we prove that every symmetric tensor of unit norm in HoH is an infinite absolute convex combination of points of the form xox with x in the unit sphere of the Hilbert space. We use this to obtain explicit characterizations of the smooth points of the unit ball of HoH .
Resumo:
The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure-alpha-helix, antiparallel beta-sheet, and parallel beta-sheet-and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm-not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.
Resumo:
A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein-Greene-Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τ trap) and their amplitude, on the electron-to-ion temperature ratio and on the dust concentration. In electron-ion plasma, an exponential relation between τ trap and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τ trap and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly
Resumo:
Doutoramento em Matemática
Resumo:
This thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients.
Resumo:
Let f(x) be a complex rational function. In this work, we study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we derive some conditions for the case of complex polynomials. We consider also the divisibility of integral polynomials, and we present a generalization of a theorem of Nieto. We show that if f(x) and g(x) are integral polynomials such that the content of g divides the content of f and g(n) divides f(n) for an integer n whose absolute value is larger than a certain bound, then g(x) divides f(x) in Z[x]. In addition, given an integral polynomial f(x), we provide a method to determine if f is irreducible over Z, and if not, find one of its divisors in Z[x].
Resumo:
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.
Resumo:
The wealth of information available freely on the web and medical image databases poses a major problem for the end users: how to find the information needed? Content –Based Image Retrieval is the obvious solution.A standard called MPEG-7 was evolved to address the interoperability issues of content-based search.The work presented in this thesis mainly concentrates on developing new shape descriptors and a framework for content – based retrieval of scoliosis images.New region-based and contour based shape descriptor is developed based on orthogonal Legendre polymomials.A novel system for indexing and retrieval of digital spine radiographs with scoliosis is presented.