858 resultados para Bermuda


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intergeneric hybridization between the epinepheline serranids Cephalopholis fulva and Paranthias furcifer in waters off Bermuda was investigated by using morphological and molecular characters. Putative hybrids, as well as members of each presumed parent species, were analyzed for 44 morphological characters and screened for genetic variation at 16 nuclear allozyme loci, two nuclear (n)DNA loci, and three mitochondrial (mt)DNA gene regions. Four of 16 allozyme loci, creatine kinase (CK-B*), fumarase (FH*), isocitrate dehydrogenase (ICDH-S*), and lactate dehydrogenase (LDH-B*), were unique in C. fulva and P. furcifer. Restriction fragments of two nuclear DNA intron regions, an actin gene intron and the second intron in the S7 ribosomal protein gene, also exhibited consistent differences between the two presumed parent species. Restriction fragments of three mtDNA regions—ND4, ATPase 6, and 12S/16S ribosomal RNA—were analyzed to identify maternal parentage of putative hybrids. Both morphological data and nuclear genetic data were found to be consistent with the hypothesis that the putative hybrids were the result of interbreeding between C. fulva and P. furcifer. Mean values of 38 morphological characters were different between presumed parent species, and putative hybrids were intermediate to presumed parent species for 33 of these characters. A principal component analysis of the morphological and meristic data was also consistent with hybridization between C. fulva and P. furcifer. Thirteen of 15 putative hybrids were heterozygous at all diagnostic nuclear loci, consistent with F1 hybrids. Two putative hybrids were identified as post-F1 hybrids based on homozygosity at one nuclear locus each. Mitochondrial DNA analysis showed that the maternal parent of all putative hybrid individuals was C. fulva. A survey of nuclear and mitochondrial loci of 57 C. fulva and 37 P. furcifer from Bermuda revealed no evidence of introgression between the parent species mediated by hybridization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to a low mineral content, the sapropelic sediments depositing in Mangrove Lake, Bermuda, provide an excellent opportunity to explore for possible additions of sulfur to organic matter during the early stages of diagenesis. We evaluated early diagenetic organic sulfur transformations by monitoring the concentrations and stable isotopic compositions of a number of inorganic and organic sulfur pools, thereby accounting for all of the sulfur in the sediments. We have identified and quantified the following sulfur pools: porewater sulfate, porewater sulfide, elemental sulfur, pyrite sulfur, hydrolyzable organic sulfur (HYOS), chromium-reducible organic sulfur (CROS), and nonchromium-reducible organic sulfur (Non-CROS). Of the organic sulfur pools, the Non-CROS pool is by far the largest, followed by CROS, and finally HYOS. By 60 cm depth these pools contribute, respectively, to 85, 7.9, and 3.6% of the total solid phase sulfur. The HYOS pool is probably of biological origin and shows no interaction with the sulfur compounds produced during diagenesis. By contrast, CROS is produced, most likely, from the diagenetic addition of polysulfides to functionalized lipids in the upper, H2S-poor, elemental sulfur-rich, region of the sediment. A portion of this sulfur pool is unstable and decomposes on contact with the H2S-rich porewaters. The portion of CROS that remains in the sulfidic waters appears to readily exchange sulfur isotopes with H2S. While some of the Non-CROS pool is of biological origin, some is also formed by the diagenetic addition of sulfur to organic compounds in the upper H2S-poor region of the sediment. By contrast with CROS, Non-CROS is not diagenetically active in the H2S-rich porewaters. Overall, somewhere between 27 and 53 % of the organic sulfur buried in Mangrove Lake sediments is of diagenetic origin, with the remaining organic sulfur derived from biosynthesis. We extrapolate our Mangrove Lake results and calculate that in typical coastal marine sediments between 11 and 29 μmol g−1 of organic sulfur will form during early diagenesis, of which 2–5 μmol g−1 will be chromium reducible.