172 resultados para Bentonite.
Resumo:
A conductive and electrochemically active composite material has been prepared by the combination of bentonite and nickel hydroxide precursor sol. This material exhibits the characteristic intercalation properties of the clay component and the electrochemical and optical properties of nickel hydroxide. The clay particles seem to induce the aggregation of nickel hydroxide, leading to the formation of a layer of alpha-Ni(OH)(2) exhibiting needle like morphology. The composite forms stable films and has been conveniently used for the preparation of modified electrodes exhibiting intercalation and electrochemical properties, thus providing an interesting material for the development of amperometric sensors. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Aim of this paper is show the viscosity measure of a sodium bentonite-water-lactose mixture and your rheological behaviour. This analysis showed the formation of tridimensional structure type and formation of stratified silicate/lactose, this occurred due to different concentrations of organic products into mixture and due to a difference of rotation during viscosity measument. Formation of networks is a consequence of the attraction between the silicate layers in water-lactose mixture. In the present work aqueous solutions of lactose with concentration of 7%, 5%, 3%, 1% and 0% (wt %) were used.
Resumo:
An indirect fluorescent test was developed for detecting antibodies to Paracoccidioides brasiliensis using bentonite particles as antigen (Bent-IF). The bentonite particles were coated with P. brasiliensis polysaccharide antigen and tested with sera from paracoccidioidomycosis patients (36 sera), normal blood donors (32 sera) and patients with non-mycotic diseases (29 sera). The titres given by the positive sera were compared with those of complement fixation (CF), immunodiffusion (ID) and immunofluorescent test using yeast forms of the fungus as antigen (conventional-IF). All normal blood donors' sera gave a negative Bent-IF, conventional-IF, ID and CF tests. All paracoccidioidomycosis sera were reactive in conventional-IF and gave concordant results in Bent-IF. There was no correlation between CF and Bent-IF titres. 27·6% of sera from patients with non-mycotic diseases gave weak titres in both IF-tests. The present data indicate that the Bent-IF is a sensitive and simple serodiagnostic technique comparable with the conventional P. brasiliensis antibody test. © 1983.
Resumo:
Bentonite particles coated with polysaccharide antigen or crude soluble antigen of Paracoccidioides brasiliensis were injected intradermally or intravenously in mice. In control animals that were not pre-immunized with P. brasiliensis antigens, coated and uncoated bentonite caused minimal and nonspecific inflammation around the cutaneous injection site or around the bentonite thrombi in small lung vessels after intravenous injection. However, in mice previously immunized with P. brasiliensis antigens, the coated bentonite particles boosted the humoral and cellular immune responses to P. brasiliensis and evoked intense inflammatory reactions. Twelve days after intradermal injection, the inflammatory reaction around the bentonite was rich in neutrophils, macrophages, lymphocytes and plasma cells associated with young granulation tissue. In intravenously injected mice, the pulmonary inflammation was maximal at day 2, and was characterized by a florid neutrophilic and macrophagic cellular infiltration around bentonite thrombi; in some foci, there was incipient organization to mature granuloma. However, in both models, there was no formation of epithelioid granulomata, demonstrating that in paracoccidioidomycosis cellular immunity alone, without the presence of intact micro-organisms, may not be enough for the development of this type of granuloma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of zeolite amendment for enhanced sorption capacity on the consolidation behavior and hydraulic conductivity, k, of a typical soil-bentonite (SB) backfill for vertical cutoff walls was evaluated via laboratory testing. The consolidation behavior and k of test specimens containing fine sand, 5.8 % (dry wt.) sodium bentonite, and 0, 2, 5, or 10 % (dry wt.) of one of three types of zeolite (clinoptilolite, chabazite-lower bed, or chabazite-upper bed) were measured using fixed-ring oedometers, and k also was measured on separate specimens using a flexible-wall permeameter. The results indicated that addition of a zeolite had little impact on either the consolidation behavior or the k of the backfill, regardless of the amount or type of zeolite. For example, the compression index, Cc, for the unamended backfill specimen was 0.24, whereas values of Cc for the zeolite amended specimens were in the range 0.19 ≤ Cc ≤ 0.23. Similarly, the k for the unamended specimen based on flexible-wall tests was 2.4 x 10-10 m/s, whereas values of k for zeolite amended specimens were in the range 1.2 x 10-10 ≤ k ≤ 3.9 x 10-10 m/s. The results of the study suggest that enhancing the sorption capacity of typical SB backfills via zeolite amendment is not likely to have a significant effect on the consolidation behavior or k of the backfill, provided that the amount of zeolite added is small (≤ 10 %).
Resumo:
The potential for changes in hydraulic conductivity, k, of two model soil-bentonite (SB) backfills subjected to wet-dry cycling was investigated. The backfills were prepared with the same base soil (clean, fine sand) but different bentonite contents (2.7 and 5.6 dry wt %). Saturation (S), volume change, and k of consolidated backfill specimens (effective stress = 24 kPa) were evaluated over three to seven cycles in which the matric suction, Ym, in the drying stage ranged from 50 to 700 kPa. Both backfills exhibited susceptibility to degradation in k caused by wet-dry cycling. Mean values of k for specimens dried at Ym = 50 kPa (S = 30-60 % after drying) remained low after two cycles, but increased by 5- to 300-fold after three or more cycles. Specimens dried at Ym ≥ 150 kPa (S < 30 % after drying) were less resilient and exhibited 500- to 10 000-fold increases in k after three or more cycles. The greater increases in k for these specimens correlated with greater vertical shrinkage upon drying. The findings suggest that increases in hydraulic conductivity due to wet-dry cycling may be a concern for SB vertical barriers located within the zone of a fluctuating groundwater table.
Resumo:
The objective of this study was to evaluate the chemical compatibility of model soil-bentonite backfills containing multiswellable bentonite (MSB) relative to that of similar backfills containing untreated sodium (Na) bentonite or a commercially available, contaminant resistant bentonite (SW101). Flexible-wall tests were conducted on consolidated backfill specimens (effective stress =34.5 kPa) containing clean sand and 4.5–5.7% bentonite (by dry weight) using tap water and calcium chloride (CaCl2) solutions (10–1,000 mM) as the permeant liquids. Final values of hydraulic conductivity (k) and intrinsic permeability (K) to the CaCl2 solutions were determined after achieving both short-term termination criteria as defined by ASTM D5084 and long-term termination criteria for chemical equilibrium between the influent and effluent. Specimens containing MSB exhibited the smallest increases in k and K upon permeation with a given CaCl2 solution relative to specimens containing untreated Na bentonite or SW101. However, none of the specimens exhibited more than a five-fold increase in k or K, regardless of CaCl2 concentration or bentonite type. Final k values for specimens permeated with a given CaCl2 solution after permeation with tap water were similar to those for specimens of the same backfill permeated with only the CaCl2 solution, indicating that the order of permeation had no significant effect on k. Also, final k values for all specimens were within a factor of two of the k measured after achieving the ASTM D5084 termination criteria. Thus, use of only the ASTM D5084 criteria would have been sufficient to obtain reasonable estimates of long-term hydraulic conductivity for the specimens in this study.
Resumo:
This study examined the chemical compatibility of several model soil-bentonite(SB) backfills with an inorganic salt solution (CaCl2). First, bentonite-water slurry was created using a natural sodium-bentonite, as well as two modified bentonites –multiswellable bentonite (MSB) and a “salt-resistant” bentonite (SW101). Once slurries that met typical construction specifications had been created using the various bentonites,the model SB backfills were prepared for each type of bentonite. These backfills werealso designed to meet conventional construction and design requirements. The SB backfills were then subjected to permeation with tap water and/or CaCl2 solutions of various concentrations in order to evaluate the compatibility of the SB backfills with inorganic chemicals. The results indicate that SB backfill experiences only minor compatibility issues (i.e., no large differences between the hydraulic conductivity of the SB backfill to tap water and CaCl2) compared to many other types of clay barriers. In addition, SB backfills show no major change in final hydraulic conductivity to CaCl2 when permeated with tap water before CaCl2 versus being permeated with CaCl2 directly. These results may be due to the ability of the bentonite in the SB backfills to undergo osmotic swelling before permeation begins, and the inability of the CaCl2 solutions to undo the osmotic swelling. Similar results were obtained for all three clays tested, and while MSB did show less compatibility issues than the natural bentonite and SW101, it appears that the differences in performance may generally be negligible. Overall, thisstudy makes a significant addition to the understanding of SB cutoff wall compatibility.
Resumo:
This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.
Resumo:
This report deals with a bentonite deposit recently developed, approximately seven miles northeast of Warm Springs, Montana. A group of claims have been staked on the deposit and are owned by the Lincoln Mining Company of Anaconda, Montana. The company also has several claims prospected for silver one mile from its present site of operations, but the silver prospects have failed to produce. The bentonite deposit was discovered incidentally during the course of other development work, and at present two adits have been driven into the side of a mountain, each crosscutting a vein-like mass of bentonite varying from two to three feet in width.
Resumo:
Research has been undertaken both under Government and private auspices in an endeavor to develop uses for bentonite. Perhaps, the work done to date has had only in consideration the possible industrial importance of bentonite. No simple, quick methods for the determination of the properties or qualities of any particular bentonite have been developed. In an attempt to establish whether or not there is a means of making rapid simple determinations of the quality of Montana bentonitic clays, and in particular, with regard to the uses to which the clays may be suited. The problem also involves a study of Montana bentonite, and a comparison of it with the standard accepted bentonites and fullers earth on the market today.
Resumo:
The purpose of Part I of this report is to determine the origin of the bentonite deposits, also to locate them with reference to section corners in the vicinity and to determine their extent. The field work for this report was done in the fall of 1933 and during the spring of 1934. The roads, geologic contacts, and culture in general were mapped with the use of an open sight alidade and plane table. Distances were determined on the roads by the speedometer on the automobile; the detailed survey in the immediate vicinity of the deposits was done with use of the Brunton compass and pacing. The purpose of Part II in this report is to determine if the bentonite deposits immediately west of Butte, Montana are of commercial importance and also to determine the use to which they are best suited.