976 resultados para Bengal Fan


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the molecular composition of a portion of the solvent-soluble organic material (lipid extract), from three organic rich muds (samples 116-717C-22X-1, 80-86 cm, 116-717C-34X-3, 130-135 cm, and 116-717C-55X-1, 65-70 cm). These samples were taken from Hole 717C, located on the Bengal Fan at a position of 0°55.8'S and 81°23.4'E. Both the palaeoenvironmental and digenetic significance of these lipid distributions have been assessed and found to be consistent with their suspected origins, i.e., turbidites from the upper slope of the western Bay of Bengal and the Ganges-Brahmaputra delta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cores recovered from three sites of Leg 116 were studied for radiolarians. Generally, radiolarians were absent from most samples prepared for examination. Moderate to well-preserved radiolarian assemblages are found only in the uppermost one or two cores that were the focus of this study. All of the radiolarian assemblages in the upper cores belong to the Buccinosphaera invaginata Zone of latest Quaternary age. However, there is one stratum where a few Miocene radiolarians are reworked into the modern assemblages. Local seamounts are suggested sources for the reworked radiolarians.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detrital K-feldspars and muscovites from Ocean Drilling Program Leg 116 cores that have depositional ages from 0 to 18 Ma have been dated by the 40Ar/39Ar technique. Four to thirteen individual K-feldspars have been dated from seven stratigraphic levels, each of which have a very large range, up to 1660 Ma. At each level investigated, at least one K-feldspar yielded an age minimum which is, within uncertainty, identical to the age of deposition. One to twelve single muscovite crystals from each of six levels have also been studied. The range of muscovite ages is less than that of the K-feldspars and, with one exception, reveal only a 20-Ma spread in ages. As with the K-feldspars, each level investigated contains muscovites with mineral ages essentially identical to depositional ages. These results indicate that a significant portion of the material in the Bengal Fan is first-cycle detritus derived from the Himalayas. Therefore, the significant proportion of sediment deposited in the distal fan in the early to mid Miocene can be ascribed to a significant pulse of uplift and erosion in the collision zone. Moreover, these data indicate that during the entire Neogene, some portion of the Himalayan orogen was experiencing rapid erosion (<= uplift). The lack of granulite facies rocks in the eastern Himalayas and Tibetan Plateau suggests that very rapid uplift must have been distributed in brief pulses in different places in the mountain belt. We suggest that the great majority of the crystals with young apparent ages have been derived from the southern slope of the Himalayas, predominantly from near the main central thrust zone. These data provide further evidence against tectonic models in which the Himalayas and Tibetan plateaus are uplifted either uniformly during the past 40 m.y. or mostly within the last 2 to 5 m.y.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineralogical and H, O, Sr, and Nd isotope compositions have been analyzed on a set of representative samples from the 17-m.y. section in ODP Leg 116 Holes 717C and 718C. Based on the mineralogical composition of the fraction <2 µm together with the lithogenic-biogenic composition of the fraction >63 µm, the whole section can be subdivided into three major periods of sedimentation. Between 17.1 and 6 m.y., and between 0.8 m.y. to present, the sediments are characterized by sandy and silty turbiditic inputs with a high proportion of minerals derived from a gneissic source without alteration. In the fraction <2 µm, illite and chlorite are dominant over smectite and kaolinite. The granulometric fraction >63 µm contains quartz, muscovite, biotite, chlorite, and feldspars. The 6-to 0.8-m.y. period is represented by an alternation of sandy/silty horizons, muds, and calcareous muds rich in smectite, and kaolinite (50% to 85% of the fraction <2 µm) and bioclastic material. The presence of smectite and kaolinite, as well as the 18O/16O and the 87Sr/86Sr ratios of the fraction <2 µm, imply an evolution in a soil environment and exchanges with meteoric ground water. The ranges of isotopic compositions are limited throughout the section: d18O quartz = 11.7 to 13.3 per mil, 87Sr/86Sr = 0.733 to 0.760 and epsilon-Nd (0) = -17.4 to -13.8. These values are within those of the High Himalaya Crystalline series, and they are considered to reflect this source region. The data imply that, since 17 Ma, this formation has supplied the major part of the eroded material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The three sites (717, 718, and 719) drilled on the distal Bengal Fan during ODP Leg 116 cored turbidite sediments almost exclusively. Calcareous nannofossils were recovered sporadically and, although all of them probably have been redeposited, it is possible to date the sediments at all three sites with reasonable confidence. Site 717 penetrated the uppermost middle Miocene Catinaster coalitus highest occurrence datum and represents the most nearly continuous succession of turbidites. Site 718 penetrated the lower Miocene, well below the Helicosphaera ampliaperta highest occurrence datum, but this site contains a major late Pliocene to mid-Pleistocene hiatus. Site 719, the shallowest hole, penetrated only into the upper Miocene. Identification of several critical lowest occurrence datums allows using the poorly constrained but more numerous highest occurrence datums for comparison with the model succession (zonal markers) and thereby to derive a reasonably accurate time framework for the sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic petrological and geochemical analyses were performed on samples cored on Broken Ridge and Ninetyeast Ridge in the Central Indian Ocean during Leg 121. Organic carbon (Corg) contents are less than 1% in each individual sample and average Corg values calculated for larger stratigraphic units are less than 0.2%. Generally, there is more organic matter in Cretaceous sediments than in Tertiary. In the Cretaceous, the bulk of the organic matter consists of terrigenous debris, but a significant contribution of marine-derived organic matter was found in some samples, especially in the early Maestrichtian on Broken Ridge (Site 754). The youngest Pliocene-Pleistocene sediments at Site 758 (northern part of Ninetyeast Ridge) contain a significant amount of clastic material transported to the site by the (distal) Bengal Fan. In these sediments, Corg contents of up to 0.9% were measured and are due to the inflow of terrigenous organic debris. Corg values are positively correlated with bulk sediment accumulation rates (i.e., sediments contain more organic matter at times of faster deposition). The size of terrigenous organic particles is generally small in all sediments. The extremely small number of particles in the Cretaceous sediments at Site 758 and their smaller grain size, compared to the Cretaceous sediments on Broken Ridge, indicate that Cretaceous surface water paleocurrents flowed from southeast to northwest in the Proto-Indian Ocean. In the central Indian Ocean, sediments deposited above the carbonate compensation depth consist of nannofossil and foraminiferal oozes. In contrast to Corg values, calcite contents in the sediments are negatively correlated with bulk sediment accumulation rates (i.e., carbonate oozes were deposited only during times of extremely slow sedimentation). Therefore, older sediments deposited in the young and still narrow Indian Ocean accumulated faster and are less carbonate-rich than Neogene sediments, although carbonate accumulation rates were higher.