971 resultados para Bellingshausen Sea, steep slope east of TMF


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study provides an account of the occurrence and diversity of marine yeasts in the slope sediments of Arabian Sea and Bay of Bengal. It also gives a clear idea about the role of yeasts in the benthic realm of marine ecosystem. The lipolytic potential of the organisms indicate the presence of rich lipid moieties in the study area. The isolates, Candida sp. SD 302 and Pichia guilliermondii SD 337 were proved to have potential oil degrading property and can be employed as bioremediators of oil spill after further characterization. The black yeasts isolated during the study area were found to have high commercial value by virtue of the by-products obtained from them. The melanin and the melanin degrading enzyme extracted from these organisms are potential bioactive materials for application in cosmetology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying the alkenone method, we estimated sea-surface temperatures (SSTs) for the past 33 kyr in two marine sediment cores recovered from the continental slope off mid-latitude Chile. The SST record shows an increase of 6.7°C from the last ice age (LIA) to the Holocene climatic optimum, while the temperature contrast between LIA and modern temperatures is only about 3.4°C. The timing and magnitude of the last deglacial warming in the ocean correspond to those observed in South American continental records. According to our SST record, the existence of a Younger Dryas equivalent cooling in the Southeast Pacific is much more uncertain than for the continental climate changes. A warming step of about 2.5°C observed between 8 and 7.5 cal kyr BP may have been linked to the early to mid-Holocene climatic transition (8.2-7.8 cal kyr BP), also described from equatorial Africa and Antarctica. In principal, variations in the latitudinal position of the Southern Pacific Westerlies are considered to be responsible for SST changes in the Peru-Chile current off mid-latitude Chile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the faunal record of planktonic foraminifers in three long gravity sediment cores from the eastern equatorial Atlantic, the sea-surface temperature history ove the last 750,000 years was studied at a resolution of 3,000 to 10,000 years. Detailed oxygen-isotope and paleomagnetic stratigraphy helped to identify the following major faunal events: Globorotaloides hexagonus and Globorotalia tumida flexuosa became extinct in the eastern tropical Atlantic at the isotope stage 4/5 boundary, now dated at 68,000 years B.P. The persistent occurrence of the pink variety of Globigerinoides ruber started during the late stage 12 at 410,000 years B.P. CARTUNE-age. This datum may provide an easily detectible faunal stratigraphic marker for the mid-Brunhes Chron. The updated scheme of the Ericson zones helped the recognition of a hiatus at the northwestern slope of the Sierra Leone Basin covering oxygen-isotope stages 10 to 12. Classifying the planktonic foraminifer counts into six faunal assemblages, according to the factor analysis derived model of Pflaumann (1985), the tropical and the tropical-upwelling communities account for 57 % at Site 16415, and 86 % at Site 13519, respectively of the variance of the faunal record. A largely continuous paleotemperature record for both winter and summer seasons was obtained from the top of the Sierra Leone Rise with the winter temperatures ranging between 20 and 25 °C, and the summer ones between 24 and 30 °C. The record of cores from greater water depths is frequently interrupted by samples with no-analogue faunal communities and/or poor preservation. Based on the seasonality signal, during cold periods the termal equator shifted to a geographically mnore asymmetrical northern position. Dissolution altering the faunal communities becomes stronger with greater water depth, the estimated mean minimum loss of specimens increases from 70 % to 80 % between 2,860 and 3,850 water depth although some species will be more susceptible than others. Enhanced dissolution occured during stage 4 but also during cold phases in the warm stage 7 and 9. Correlations between the Foraminiferal Dissolution Index and the estimated sea-surface temperatures are significant. Foraminiferal flux rates, negatively correlated to the flux rates of organic carbon and of diatoms, may be a result of enhanced dissolution during cold stages, destroying still more of the faunal signal than indicated by the calculated minimum loss. The fluctuations of the oxygen-isotope curves and the hibernal sea-surfave temperatures are fairly coherent. During warm oxygen-isotope stages the temperature maxima lag often by 5 to 15 ka behind the respective sotope minima. During cold stages, sea-surface temperature changes are partly out of phase and contain additional fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pack ice in the Bellingshausen Sea contained moderate to high stocks of microalgal biomass (3-10 mg Chl a/m**2) spanning the range of general sea-ice microalgal microhabitats (e.g., bottom, interior and surface) during the International Polar Year (IPY) Sea Ice Mass Balance in the Antarctic (SIMBA) studies. Measurements of irradiance above and beneath the ice as well as optical properties of the microalgae therein demonstrated that absorption of photosynthetically active radiation (PAR) by particulates (microalgae and detritus) had a substantial influence on attenuation of PAR and irradiance transmission in areas with moderate snow covers (0.2-0.3 m) and more moderate effects in areas with low snow cover. Particulates contributed an estimated 25 to 90% of the attenuation coefficients for the first-year sea ice at wavelengths less than 500 nm. Strong ultraviolet radiation (UVR) absorption by particulates was prevalent in the ice habitats where solar radiation was highest - with absorption coefficients by ice algae often being as large as that of the sea ice. Strong UVR-absorption features were associated with an abundance of dinoflagellates and a general lack of diatoms - perhaps suggesting UVR may be influencing the structure of some parts of the sea-ice microbial communities in the pack ice during spring. We also evaluated the time-varying changes in the spectra of under-ice irradiances in the austral spring and showed dynamics associated with changes that could be attributed to coupled changes in the ice thickness (mass balance) and microalgal biomass. All results are indicative of radiation-induced changes in the absorption properties of the pack ice and highlight the non-linear, time-varying, biophysical interactions operating within the Antarctic pack ice ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Subtropical Front (STF) marking the northern boundary of the Southern Ocean has a steep gradient in sea surface temperature (SST) of approximately 4°C over 0.5° of latitude. Presently, in the region south of Tasmania, the STF lies nominally at 47°S in the summer and 45°S in the winter. We present here SST reconstructions in a latitudinal transect of cores across the South Tasman Rise, southeast of Australia, during the late Quaternary. SST reconstructions are based on two paleotemperature proxies, alkenones and faunal assemblages, which are used to assess past changes in SST in spring and summer. The north-south alignment in core locations allows reconstruction of movement of the STF over the last 100 ka. Surface water temperatures during the last glaciation in this region were ~4°C colder than today. Additional temperature changes greater in magnitude than 4°C seen in individual cores can be attributed to changes in the water mass overlying the core site caused by the movement of the front across that location. During the penultimate interglacial, SST was ~2°C warmer and the STF was largely positioned south of 47°S. Movement of the STF to the north occurred during cool climate periods such as the last marine isotope stages 3 and 4. In the last glaciation, the front was at its farthest north position, becoming pinned against the Tasmanian landmass. It moved south by 4° latitude to 47°S in summer during the deglaciation but remained north of 45°S in spring throughout the early deglaciation. After 11 ka B.P. inferred invigoration of the East Australia Current appears to have pushed the STF seasonally south of the East Tasman Plateau, until after 6 ka B.P. when it achieved its present configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioaccumulation of trace metals in carbonate shells of mussels and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin, Gulf of California). Mineralogical analysis showed that carbonate skeletons of mytilid mussel Bathymodiolus sp. and vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for contents of a variety of chemical elements in bivalve carbonate shells from various hydrothermal vent sites. Analyses of chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from mollusk biotopes revealed influences of environmental conditions and some biological parameters on bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by factor of 20-30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that essential elements (Fe, Mn, Ni, and Cu) more actively accumulated during early ontogeny of the shells. High enrichment factors of most metals (n x 100 - n x 10000) indicate efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on shell surfaces was estimated to be no higher than 50% of total amount and varied from 14% for Fe to 46% for Mn.