990 resultados para Behavior Monitoring


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approach slab pavement at integral abutment (I-A) bridges are prone to settlement and cracking, which has been long recognized by the Iowa Department of Transportation (DOT). A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. This study sought to supplement a previous project by instrumenting, monitoring, and analyzing the behavior of an approach slab tied to a integral abutment bridge. The primary objective of this investigation was to evaluate the performance of the approach slab. To satisfy the research needs, the project scope involved reviewing a similar previous study, implementing a health monitoring system on the approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections of the bridge and approach slab. Based on the information obtained from the testing, the following general conclusions were made: the integral connection between the approach slab and the bridge appears to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; the measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge and the observed responses generally followed an annual cyclic and/or short term cyclic pattern over time; the expansion joint at one side of the approach slab does not appear to be functioning as well as elsewhere; much larger frictional forces were observed in this study compared to the previous study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nationally, there are questions regarding the design, fabrication, and erection of horizontally curved steel girder bridges due to unpredicted girder displacements, fit-up, and locked-in stresses. One reason for the concerns is that up to one-quarter of steel girder bridges are being designed with horizontal curvature. There is also an urgent need to reduce bridge maintenance costs by eliminating or reducing deck joints, which can be achieved by expanding the use of integral abutments to include curved girder bridges. However, the behavior of horizontally curved bridges with integral abutments during thermal loading is not well known nor understood. The purpose of this study was to investigate the behavior of horizontal curved bridges with integral abutment (IAB) and semi-integral abutment bridges (SIAB) with a specific interest in the response to changing temperatures. The long-term objective of this effort is to establish guidelines for the use of integral abutments with curved girder bridges. The primary objective of this work was to monitor and evaluate the behavior of six in-service, horizontally curved, steel-girder bridges with integral and semi-integral abutments. In addition, the influence of bridge curvature, skew and pier bearing (expansion and fixed) were also part of the study. Two monitoring systems were designed and applied to a set of four horizontally curved bridges and two straight bridges at the northeast corner of Des Moines, Iowa—one system for measuring strains and movement under long term thermal changes and one system for measuring the behavior under short term, controlled live loading. A finite element model was developed and validated against the measured strains. The model was then used to investigate the sensitivity of design calculations to curvature, skew and pier joint conditions. The general conclusions were as follows: (1) There were no measurable differences in the behavior of the horizontally curved bridges and straight bridges studied in this work under thermal effects. For preliminary member sizing of curved bridges, thermal stresses and movements in a straight bridge of the same length are a reasonable first approximation. (2) Thermal strains in integral abutment and semi-integral abutment bridges were not noticeably different. The choice between IAB and SIAB should be based on life – cycle costs (e.g., construction and maintenance). (3) An expansion bearing pier reduces the thermal stresses in the girders of the straight bridge but does not appear to reduce the stresses in the girders of the curved bridge. (4) An analysis of the bridges predicted a substantial total stress (sum of the vertical bending stress, the lateral bending stress, and the axial stress) up to 3 ksi due to temperature effects. (5) For the one curved integral abutment bridge studied at length, the stresses in the girders significantly vary with changes in skew and curvature. With a 10⁰ skew and 0.06 radians arc span length to radius ratio, the curved and skew integral abutment bridges can be designed as a straight bridge if an error in estimation of the stresses of 10% is acceptable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly reflect population sizes and trends. This study compares capture-mark-recapture (absolute abundance) and count-index (relative abundance) monitoring methods in three species (Maculinea nausithous and Iolana iolas: Lycaenidae; Minois dryas: Satyridae) in contrasted habitat types. We demonstrate that intraspecific variability in individual detectability under standard monitoring conditions is probably the rule rather than the exception, which questions the reliability of count-based indices to estimate and compare specific population abundance. Our results suggest that the accuracy of count-based methods depends heavily on the ecology and behavior of the target species, as well as on the type of habitat in which surveys take place. Monitoring programs designed to assess the abundance and trends in butterfly populations should incorporate a measure of detectability. We discuss the relative advantages and inconveniences of current monitoring methods and analytical approaches with respect to the characteristics of the species under scrutiny and resources availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Pre-existing psychological factors can strongly influence coping with type 1 diabetes mellitus and interfere with self-monitoring. Psychiatric disorders seem to be positively associated with poor metabolic control. We present a case of extreme compulsive blood testing due to obsessive fear of hypoglycemia in an adolescent with type 1 diabetes mellitus. Case report: Type 1 diabetes mellitus (anti GAD-antibodies 2624 U/l, norm < 9.5) was diagnosed in a boy aged 14.3 years [170 cm (+ 0.93 SDS), weight 50.5 kg (+ 0.05 SDS)]. Laboratory work-up showed no evidence for other autoimmune disease. Family and past medical history were unremarkable. Growth and developmental milestones were normal. Insulin-analog based basal-bolus regime was initiated, associated to standard diabetic education. Routine psychological evaluation performed at the onset of diabetes revealed intermittent anxiety and obsessivecompulsive traits. Accordingly, a close psychiatric follow-up was initiated for the patient and his family. An adequate metabolic control (HbA1c drop from >14 to 8%) was achieved within 3 months, attributed to residual -cell function. In the following 6 months, HbA1c rose unexpectedly despite seemingly adequate adaptations of insulin doses. Obsessive fear of hypoglycemia leading to a severe compulsive behavior developed progressively with as many as 68 glycemia measurements per day (mean over 1 week). The patient reported that he could not bear leaving home with glycemia < 15 mmol/l, ending up with school eviction and severe intra-familial conflict. Despite intensive psychiatric outpatient support, HbA1c rose rapidly to >14% with glycemia-testing reaching peaks of 120 tests/day. The situation could only be discontinued through psychiatric hospitalization with intensive behavioral training. As a result, adequate metabolic balance was restored (HbA1c value: 7.1 %) with acceptable 10-15 daily glycemia measurements. Discussion: The association of overt psychiatric disorders to type 1 diabetes mellitus is very rare in the pediatric age group. It can lead to a pathological behavior with uncontrolled diabetes. Such exceptional situations require long-term admissions with specialized psychiatric care. Slow acceptation of a "less is better" principle in glycemia testing and amelioration of metabolic control are difficult to achieve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: This study aimed to survey current practices in European epilepsy monitoring units (EMUs) with emphasis on safety issues. METHODS: A 37-item questionnaire investigating characteristics and organization of EMUs, including measures for prevention and management of seizure-related serious adverse events (SAEs), was distributed to all identified European EMUs plus one located in Israel (N=150). RESULTS: Forty-eight (32%) EMUs, located in 18 countries, completed the questionnaire. Epilepsy monitoring unit beds are 1-2 in 43%, 3-4 in 34%, and 5-6 in 19% of EMUs; staff physicians are 1-2 in 32%, 3-4 in 34%, and 5-6 in 19% of EMUs. Personnel operating in EMUs include epileptologists (in 69% of EMUs), clinical neurophysiologists trained in epilepsy (in 46% of EMUs), child neurologists (in 35% of EMUs), neurology and clinical neurophysiology residents (in 46% and in 8% of EMUs, respectively), and neurologists not trained in epilepsy (in 27% of EMUs). In 20% of EMUs, patients' observation is only intermittent or during the daytime and primarily carried out by neurophysiology technicians and/or nurses (in 71% of EMUs) or by patients' relatives (in 40% of EMUs). Automatic detection systems for seizures are used in 15%, for body movements in 8%, for oxygen desaturation in 33%, and for ECG abnormalities in 17% of EMUs. Protocols for management of acute seizures are lacking in 27%, of status epilepticus in 21%, and of postictal psychoses in 87% of EMUs. Injury prevention consists of bed protections in 96% of EMUs, whereas antisuffocation pillows are employed in 21%, and environmental protections in monitoring rooms and in bathrooms are implemented in 38% and in 25% of EMUs, respectively. The most common SAEs were status epilepticus reported by 79%, injuries by 73%, and postictal psychoses by 67% of EMUs. CONCLUSIONS: All EMUs have faced different types of SAEs. Wide variation in practice patterns and lack of protocols and of precautions to ensure patients' safety might promote the occurrence and severity of SAEs. Our findings highlight the need for standardized and shared protocols for an effective and safe management of patients in EMUs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic adaptations of one"s behavior by means of performance monitoring are a central function of the human executive system, that underlies considerable interindividual variation. Converging evidence from electrophysiological and neuroimaging studies in both animals and humans hints atthe importance ofthe dopaminergic system forthe regulation of performance monitoring. Here, we studied the impact of two polymorphisms affecting dopaminergic functioning in the prefrontal cortex [catechol-O-methyltransferase (COMT) Val108/158Met and dopamine D4 receptor (DRD4) single-nucleotide polymorphism (SNP)-521] on neurophysiological correlates of performance monitoring. We applied a modified version of a standard flanker task with an embedded stop-signal task to tap into the different functions involved, particularly error monitoring, conflict detection and inhibitory processes. Participants homozygous for the DRD4 T allele produced an increased error-related negativity after both choice errors and failed inhibitions compared with C-homozygotes. This was associated with pronounced compensatory behavior reflected in higher post-error slowing. No group differences were seen in the incompatibility N2, suggesting distinct effects of the DRD4 polymorphism on error monitoring processes. Additionally, participants homozygous for the COMTVal allele, with a thereby diminished prefrontal dopaminergic level, revealed increased prefrontal processing related to inhibitory functions, reflected in the enhanced stop-signal-related components N2 and P3a. The results extend previous findings from mainly behavioral and neuroimaging data on the relationship between dopaminergic genes and executive functions and present possible underlying mechanisms for the previously suggested association between these dopaminergic polymorphisms and psychiatric disorders as schizophrenia or attention deficit hyperactivity disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite transmitters and geographic-positioning-system devices often add substantial mass to birds to which they are attached. Studies on the effects of such instruments have focused on indirect measures, whereas the direct influence of extra mass on pelagic behavior is poorly known. We used 2.5-g geolocators to investigate the effect of extra mass on the pelagic behavior of Cory's Shearwaters (Calonectris diomedea) by comparing the traits of a single foraging trip among a group carrying 30-g weights, a group carrying 60-g weights, and a control group. The weights were attached to the birds' backs using typical techniques for attaching satellite transmitters to seabirds. The extra mass increased the duration of the birds' trips and decreased their foraging efficiency and mass gained at sea. These indirect effects may be related to foraging traits: weighted birds showed a greater search effort than control birds, traveled greater distances, covered a greater foraging area, and increased the maximum foraging range. Furthermore, the time spent on the sea surface at night was greater for weighted than for control groups, which showed that the extra mass also affected activity patterns. Our results underline the need to quantify the effects of monitoring equipment commonly used to study the pelagic behavior of seabirds. We suggest that geolocators can be used to obtain control data on foraging-trip movements and activity patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive literature suggests a link between executive functions and aggressive behavior in humans, pointing mostly to an inverse relationship, i.e., increased tendencies toward aggression in individuals scoring low on executive function tests. This literature is limited, though, in terms of the groups studied and the measures of executive functions. In this paper, we present data from two studies addressing these issues. In a first behavioral study, we asked whether high trait aggressiveness is related to reduced executive functions. A sample of over 600 students performed in an extensive behavioral test battery including paradigms addressing executive functions such as the Eriksen Flanker task, Stroop task, n-back task, and Tower of London (TOL). High trait aggressive participants were found to have a significantly reduced latency score in the TOL, indicating more impulsive behavior compared to low trait aggressive participants. No other differences were detected. In an EEG-study, we assessed neural and behavioral correlates of error monitoring and response inhibition in participants who were characterized based on their laboratory-induced aggressive behavior in a competitive reaction time task. Participants who retaliated more in the aggression paradigm and had reduced frontal activity when being provoked did not, however, show any reduction in behavioral or neural correlates of executive control compared to the less aggressive participants. Our results question a strong relationship between aggression and executive functions at least for healthy, high-functioning people.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noradrenergic neurotransmission has been associated with the modulation of higher cognitive functions mediated by the prefrontal cortex. In the present study, the impact of noradrenergic stimulation on the human action-monitoring system, as indexed by eventrelated brain potentials, was examined. After the administration of a placebo or the selective 2 -adrenoceptor antagonist yohimbine, which stimulates firing in the locus ceruleus and noradrenaline release, electroencephalograpic recordings were obtained from healthy volunteers performing a letter flanker task. Yohimbine led to an increase in the amplitude of the error-related negativity in conjunction with a significant reduction of action errors. Reaction times were unchanged, and the drug did not modify the N2 in congruent versus incongruent trials, a measure of preresponse conflict, or posterror adjustments as measured by posterror slowing of reaction time. The present findings suggest that the locus ceruleusnoradrenaline system exerts a rather specific effect on human action monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of ionic liquid analogues as solvents has increased in order to substitute the aqueous solvents in some applications in which the side reactions are undesirable. However these solvents prepared from the mixture in the eutectic proportion of species establishing hydrogen bonds are susceptible of electrochemical reactions. The study of platinum deposition on vitreous carbon in an ionic liquid analogue (2 urea: choli ne chloride) is presented; the electrochemical study has permitted to interpret the sequence of the metal deposition process and simultaneously to analyze the behavior of the ionic liquid analogue along the process. Reduction reactions of the solvent relat ed both to the electronation of choline and hydrogen formation have been detected. Different substrata have been used in order to test the possibility and the extent of these reactions depending on the nature of material. The results indicate that the feas ible electrochemical window of the substrate/solvent is highly dependent of the kind of substrate; the negative limit is tied by the massive hydrogen reaction, reaction enhanced by the electrocatalytic character of the substrate.