1000 resultados para Bed dip direction
Resumo:
Fifteen lengths of Leg 59 cores (primarily from Hole 451 as well as from Holes 447A and 448A) exhibiting macroscopic faults were selected by Dr. R. B. Scott (Co-Chief Scientist, Leg 59) to help us initiate this petrofabric analysis. We proposed to (1) determine what dynamically useful deformation features might be associated with the faults, and (2) infer from these features as much as possible about the physical environment of the deformation (effective pressure, differential stress, temperature, and strain rate), the orientation and relatively magnitudes of the principal stresses at the time of deformation, and the degree of induration of the rocks at the time of deformation. The cores, mainly from Hole 451, had been slabbed on board ship with respect to the trace of bedding so that each cut surface contains the true bedding dip-direction. In general, the cores from Hole 451 are largely calcareous, lithic and vitric, brecciated tuffs, whereas those from Holes 447A and 448A are basalts or basalt breccias.
Resumo:
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.
Resumo:
Bedding dips in the CRP-2A drillhole were determined in two ways (1) analysis of a dipmeter log, and (2) identification of bed boundaries on digital images of the outer core surface. The two methods document the downhole increase in structural dip, to a maximum of 15° in the lowest 150 m of the hole. Dipmeter data, which are azimuthally oriented, indicate a 75° azimuth for structural tilting, in agreement with seismic reflection profiles. Core and log dips indicate that structural dip increases by 5-7° between 325 and 480 mbsf. Both, however, also exhibit high dip inhomogeneity because of depositional (e.g., cross bedding) and post-depositional (e.g., softsediment deformation) processes. This variability adds ambiguity to the search for angular unconformities within the CRP-2A drillhole. Dip directions of different lithologies are generally similar, as are dip directions for the four kinds of systems tracts. Downdip azimuths of sands and muds are slightly different from those of diamicts, possibly reflecting the divergence between ENE offshore dip and ESE glacial advance.
Resumo:
Bedding dips in the CRP-3 drillhole were determined in three ways: (1) analysis of a dipmeter log, (2) identification of bed boundaries on borehole televiewer log images, and (3) identification of bed boundaries on digital images of the outer surfaces of oriented cores. All three methods determine both dip magnitude and downdip azimuth of bedding. Dipmeter results document variations in bedding dip throughout the logged interval (20-902 mbsf), whereas core and televiewer results are available at present only for selected depth intervals. Dipmeter data indicate that structural dip is remarkably constant, at 21° dip to azimuth 65°, throughout the Tertiary shelf section, except for the top 100 m where dips appear to be 5-10° shallower. This pattern, in conjunction with the systematically increasing dips throughout CRP-2A, suggests that the growth faulting active during CRP-2A deposition began during the final period of deposition at CRP-3. Normal faults at 260 and 539 mbsf in CRP-3 exhibit neither drag (localized dip steepening) nor significant changes in structural dip across them. Oriented core and televiewer analyses, covering a total of 200 m in the interval 400-900 mbsf, indicate bedding patterns that confirm the dipmeter results. The doleritic breccia at the base of the Tertiary section has steeper dips than overlying structural dips, possibly indicating a sedimentary dip to ENE in these fan sediments. Dip directions in the underlying Devonian Beacon sandstone are surprisingly similar to those in the overlying Tertiary section. Superimposed on the average Beacon dip of 22° to the ENE are localized tilts of up to 20°, probably caused by Tertiary fracturing and brecciation rather than original sedimentary dip variations.
Resumo:
During Ocean Drilling Program Legs 152 and 163, we recovered core from the offshore East Greenland volcanic province. The basaltic core recovered included a set of structural elements reflecting the history of extrusion, cooling, postdeposition alteration, and minor tectonism. Brittle features in the basaltic core include faults and several generations of veins. Several minicore samples from the lower sections of core from Hole 917A were taken for paleomagnetic analysis, primarily to test whether there were any significant postdepositional tectonic rotations or whether the core could be reoriented using paleomagnetic techniques. The characteristic magnetization direction was used to estimate the in situ orientation of measured structural features within the core. Although significant uncertainty is associated with the analysis, the corrected attitudes of veins in basalt at Site 917 dip moderately west, with a smaller, conjugate group of veins dipping moderately east-southeast, parallel to other seaward-dipping faults in the area, which were interpreted from seismic lines.
Resumo:
The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.
Resumo:
An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.
Resumo:
The region Indiara (GO) is located in southwestern of São Francisco Craton in the Internal Zone of the Brasília Belt, western part of the Tocantins Province. In this locality outcrop rocks of the Goiás Magmatic Arc. These rocks are muscovite gneiss with biotite, muscovite-biotite gneiss, biotite gneiss with muscovite and garnet, biotite-muscovite gneiss, muscovite porfiroclastic gneiss, biotite porfiroclastic gneiss, muscovite-quartz schists, garnetquartz schists, and metamafic rock (hornblende schists) as metric or kilometric lenses. The gneisses have granodioritic composition, granoblastic texture, with some portions with lepidoblastic texture, constituting a discontinuous centimeter to millimeter banding; the structure is anisotropic, marked by the preferred orientation of all the minerals. These gneisses are leucocratic, generally are inequigranular and fine to medium grained. The hornblende schists have nematoblastic texture, are inequigranular and fine to medium grained and have anisotropic structure that is given by a foliation, marked by a strong preferential orientation of the crystals of amphibole and other minerals present in the rock. The gneisses of the area are composed of plagioclase (oligoclase/andesine), quartz, microcline, muscovite, biotite, epidote, apatite, zircon, garnet, kyanite, oxides and hydroxides of iron and opaque minerals. And the metamafic rocks of Indiara region are composed mainly of amphibole, plagioclase (oligoclase/andesine), quartz, titanite, biotite, allanite, garnet, oxides and hydroxides of iron, apatite, epidote, rutile, muscovite and opaque minerals. At least three phases of deformation were observed in the rocks of area of study (Dn-1, Dn and Dn +1). The Dn phase and represented by a well-marked foliation Sn having low dip angle (average dip of 20 °) and dip direction to SW (210/21) and to NE (18/20); the Dn-1 phase is represented by a compositional banding (Sn- 1), this banding is generally...