962 resultados para Beams
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. However, no research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with web openings. In this research, finite element models of LSBs with web openings in shear were developed to simulate the shear behaviour and strength of LSBs including their buckling characteristics. They were then validated by comparing their results with available experimental test results and used in a detailed parametric study. The results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and parametric study results. An alternative shear design method based on an equivalent reduced web thickness was also proposed. It was found that the same shear strength design rules developed for LSBs without web openings can be used for LSBs with web openings provided the equivalent reduced web thickness equation developed in this paper is used. This is a significant advancement as it simplifies the shear design methods of LSBs with web openings considerably.
Resumo:
Abstract: The LiteSteel Beam (LSB) is a new cold-formed steel hollow flange channel beam recently developed in Australia. It is commonly used as a floor joist or bearer in buildings. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LSBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, no research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore a detailed experimental study involving 26 shear tests was undertaken on simply supported LSB test specimens with web openings and an aspect ratio of 1.5. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear strength of LSBs with web openings based on the experimental results from this study.
Resumo:
The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. In addition to this unique geometry, the LSB sections also have unique characteristics relating to their stress-strain curves, residual stresses, initial geometric imperfections and hollow flanges that are not encountered in conventional hot-rolled and cold-formed steel channel sections. An experimental study including 20 section moment capacity tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. The presence of inelastic reserve bending capacity in these beams was investigated in detail although the current design rules generally limit the section moment capacities of cold-formed steel members to their first yield moments. The ultimate moment capacities from the tests were compared with the section moment capacities predicted by the current cold-formed and hot-rolled steel design standards. It was found that compact and non-compact LSB sections have greater moment capacities than their first yield moments. The current cold-formed steel design standards were found to be conservative in predicting the section moment capacities of compact and non-compact LSB sections while the hot-rolled steel design standards were able to better predict them. This paper has shown that suitable modifications are needed to the current design rules to allow the inclusion of available inelastic bending capacities of LSBs in design.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.
Resumo:
Recently developed cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their light weight and cost-effectiveness. Currently, there is significant interest in the use of LSB sections as flexural members in floor joist systems, although they can be used as flexural and compression members in a range of building systems. The plastic bending behaviour and section moment capacity of LSB sections with web holes can be assumed to differ from those without, but have yet to be investigated. Hence, no appropriate design rules for determining the section moment capacity of LSB sections with web holes are yet available. This paper presents the results of an investigation of the plastic bending behaviour and section moment capacity of LSB sections with circular web holes. LSB sections with varying circular hole diameters and degrees of spacing were considered. The paper also describes the simplified finite element (FE) modelling technique employed in this study, which incorporates all of the significant behavioural effects that influence the plastic bending behaviour and section moment capacity of these sections. The numerical and experimental test results and associated findings are also presented.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in buildings. Their behaviour and moment capacities are influenced by lateral-torsional buckling when they are not laterally restrained adequately. Past research on lateral-torsional buckling has concentrated on hot-rolled steel beams. Hence a numerical study was undertaken to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending. For this purpose a finite element model was developed using ABAQUS and its accuracy was verified using available numerical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional buckling behaviour and capacity of cold-formed steel beams under varying conditions. The moment capacity results were compared with the predictions from the current design rules in many cold-formed steel codes and suitable recommendations were made. European design rules were found to be conservative while Australian/New Zealand and North American design rules were unconservative. Hence the moment capacity design equations in these codes were modified in this paper based on the available finite element analysis results. This paper presents the details of the parametric study, recommendations to current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using its patented dual electric resistance welding and automated continuous roll-forming technologies. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. Its flexural strength for intermediate spans is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion. Recent research on LSBs has mainly focussed on their lateral distortional buckling behaviour under uniform moment conditions. However, in practice, LSB flexural members are subjected to non-uniform moment distributions and load height effects as they are often under transverse loads applied above or below their shear centre. These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The non-uniform moment distribution and load height effects of transverse loading on cantilever LSBs, and the suitability of the current design modification factors to include such effects are not known. This paper presents a numerical study based on finite element analyses of the elastic lateral buckling strength of cantilever LSBs subject to transverse loading, and the results. The applicability of the design modification factors from various steel design codes was reviewed, and suitable recommendations are presented for cantilever LSBs subject to transverse loading.
Resumo:
Abstract: This paper presents the details of a study into the behaviour and moment capacities of cold-formed steel lipped channel beams (LCB) subject to lateral-torsional buckling at elevated temperatures. It was based on a validated numerical model of a simply supported and laterally unrestrained LCB subjected to a uniform moment. The ultimate moment capacities from this study were compared with the predicted values using ambient and fire design methods. This study showed that the lateral torsional buckling capacity is strongly influenced by the level of non-linearity in the stress-strain curves of steel at elevated temperatures. Hence most of the current design methods based on a single buckling curve were not adequate to determine the moment capacities. This paper proposes a new design method for the cold-formed steel LCBs subject lateral-torsional buckling at elevated temperatures.
Resumo:
Australian manufacturers recently developed a new mono-symmetric cold-formed steel hollow flange channel section known as LiteSteel Beam. The innovative LSB sections with rectangular flanges are currently being used as floor joists and bearers in buildings. In order to assess their behaviour and section moment capacity including the presence of any inelastic reserve bending capacity, 20 section moment capacity tests were conducted in this study. Test results were compared with the section moment capacities predicted by the steel design codes. Although the current cold-formed steel design rules generally limit the section moment capacities to their first yield moments, test results showed that inelastic reserve bending capacity was present in the compact and non-compact LSB sections. The results have shown that suitable modifications to the current design rules are needed to allow the inclusion of available inelastic bending capacities of LSBs in design.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Shear tests of LSBs with web openings have shown that there is up to a 60% reduction in the shear capacity due to the inclusion of web openings. Hence there is a need to improve the shear capacity of LSBs with web openings. A cost effective way to eliminate the shear capacity reduction is to attach suitable stiffeners around the web openings. Hence experimental studies were undertaken to investigate the shear behaviour and strength of LSBs with stiffened web openings. In this research, various stiffening methods using plate and LSB stiffeners attached to LSBs using both welding and screw-fastening were attempted. Our test results showed that the stiffening arrangements recommended by past research for cold-formed steel channel beams are not adequate to restore the shear strengths of LSBs with web openings. Therefore new stiffener arrangements were proposed for LSBs with web openings. This paper presents the details of this experimental study and the results including the details of the optimum stiffener details for LiteSteel beams.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed steel lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 32 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with an aspect ratio of 1.0 and 1.5 were loaded at mid-span until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSBs have the beneficial characteristics of torsionally rigid rectangular hollow flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural and shear strengths of LSBs. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a detailed experimental study involving 18 tests was undertaken to investigate the behaviour and strength of LSBs under combined shear and bending actions. Test results showed that AS/NZS 4600 design rules for unstiffened webs grossly underestimated the capacity of LSBs. Therefore improved design equations were proposed for the combined shear and bending capacities of LSBs based on experimental results.
Resumo:
This paper presents the details of a numerical study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. They have a unique shape of a channel beam with two rectangular hollow flanges. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a numerical study was undertaken to investigate the behaviour and strength of LSBs subject to combined shear and bending actions. In this research, finite element models of LSBs were developed to simulate the combined shear and bending behaviour and strength of LSBs. They were then validated by comparing their results with test results and used in a parametric study. Both experimental and finite element analysis results showed that the current design equations are not suitable for combined shear and bending capacities of LSBs. Hence improved design equations are proposed for the capacities of LSBs subject to combined shear and bending actions.
Resumo:
This LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Shear tests of LSBs with web openings have shown that there is up to 60% reduction in the shear capacity. Hence there is a need to improve the shear capacity of LSBs with web openings. A cost effective way to eliminate the shear capacity reduction is to stiffen the web openings using suitable stiffeners. Hence numerical studies were undertaken to investigate the shear capacity of LSBs with stiffened web openings. In this research, finite element models of LSBs with stiffened web openings in shear were developed to simulate the shear behaviour and strength of LSBs. Various stiffening methods using plate and LSB stiffeners attached to LSBs using both welding and screw-fastening were attempted. The developed models were then validated by comparing their results with experimental results and used in further studies. Both finite element and experimental results showed that the stiffening arrangements recommended by past research for cold-formed steel channel beams are not adequate to restore the shear strengths of LSBs with web openings. Therefore new stiffener arrangements were proposed for LSBs with web openings. This paper presents the details of this research project using numerical studies and the results.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Shear behaviour of LCBs with web openings is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations were therefore proposed for the shear strength of LCBs with web openings. This paper presents the details of this numerical study of LCBs with web openings, and the results.