964 resultados para Bayesian Inference, HIghest Posterior Density, Invariance, Odds Ratio, Objective Priors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is interest in studying latent variables. These latent variables are directly considered in the Item Response Models (IRM) and they are usually called latent traits. A usual assumption for parameter estimation of the IRM, considering one group of examinees, is to assume that the latent traits are random variables which follow a standard normal distribution. However, many works suggest that this assumption does not apply in many cases. Furthermore, when this assumption does not hold, the parameter estimates tend to be biased and misleading inference can be obtained. Therefore, it is important to model the distribution of the latent traits properly. In this paper we present an alternative latent traits modeling based on the so-called skew-normal distribution; see Genton (2004). We used the centred parameterization, which was proposed by Azzalini (1985). This approach ensures the model identifiability as pointed out by Azevedo et al. (2009b). Also, a Metropolis Hastings within Gibbs sampling (MHWGS) algorithm was built for parameter estimation by using an augmented data approach. A simulation study was performed in order to assess the parameter recovery in the proposed model and the estimation method, and the effect of the asymmetry level of the latent traits distribution on the parameter estimation. Also, a comparison of our approach with other estimation methods (which consider the assumption of symmetric normality for the latent traits distribution) was considered. The results indicated that our proposed algorithm recovers properly all parameters. Specifically, the greater the asymmetry level, the better the performance of our approach compared with other approaches, mainly in the presence of small sample sizes (number of examinees). Furthermore, we analyzed a real data set which presents indication of asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of strong negative asymmetry of the latent traits distribution. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate the components of variance and genetic parameters for the visual scores which constitute the Morphological Evaluation System (MES), such as body structure (S), precocity (P) and musculature (M) in Nellore beef-cattle at the weaning and yearling stages, by using threshold Bayesian models. The information used for this was gleaned from visual scores of 5,407 animals evaluated at the weaning and 2,649 at the yearling stages. The genetic parameters for visual score traits were estimated through two-trait analysis, using the threshold animal model, with Bayesian statistics methodology and MTGSAM (Multiple Trait Gibbs Sampler for Animal Models) threshold software. Heritability estimates for S, P and M were 0.68, 0.65 and 0.62 (at weaning) and 0.44, 0.38 and 0.32 (at the yearling stage), respectively. Heritability estimates for S, P and M were found to be high, and so it is expected that these traits should respond favorably to direct selection. The visual scores evaluated at the weaning and yearling stages might be used in the composition of new selection indexes, as they presented sufficient genetic variability to promote genetic progress in such morphological traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of genetic parameters is essential for improved reproductive management and increased yield. Quantitative analysis of genetic parameters is lacking for many breeds of buffaloes. This article provides the first estimate of genetic parameters for dual purpose (meat and milk) Brazilian Jaffarabadi buffaloes, using Bayesian inference. Data on milk yield (MY), lactation length (LL), weight at 205 days (W205) and 365 (W365) days of age, and average daily gain (ADG) from 205 to 365 days of age were collected in two herds. Bivariate analyses (using the program MTGSAM) were performed with the Gibbs sampler to obtain estimates of variance and covariance. Average lactation milk yield and lactation length were 1 620.2 +/- 450.9 kg and 257.6 +/- 46.8 days, respectively, and the mean values for weight traits (kg) were 181.6 +/- 63.3 (W205), 298.04 +/- 116.1 (W365), and 0.73 +/- 0.35 (ADG). Heritability estimates (modes) were 0.16 for MY, 0.10 for LL, 0.43 for W205, 0.48 for W365 and 0.32 for ADG. There was a high genetic correlation (0.96) between milk yield and lactation length and very high genetic correlations (0.99) between the three growth traits. Our data suggest that both milk production and growth traits have clear potential for yield improvement through direct selection in this dual purpose breed. The selection for weight at an early age would be successful and selection for MY can be performed in the first lactation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this experiment was to test in vitro embryo production (IVP) as a tool to estimate fertility performance in zebu bulls using Bayesian inference statistics. Oocytes were matured and fertilized in vitro using sperm cells from three different Zebu bulls (V, T, and G). The three bulls presented similar results with regard to pronuclear formation and blastocyst formation rates. However, the cleavage rates were different between bulls. The estimated conception rates based on combined data of cleavage and blastocyst formation were very similar to the true conception rates observed for the same bulls after a fixed-time artificial insemination program. Moreover, even when we used cleavage rate data only or blastocyst formation data only, the estimated conception rates were still close to the true conception rates. We conclude that Bayesian inference is an effective statistical procedure to estimate in vivo bull fertility using data from IVP. © 2011 Mateus José Sudano et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate genetic, environmental and phenotypic correlation between birth weight (BW) and weight at 205 days age (W205), BW and weight at 365 days age (W365) and W205-W365, using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data that included 3,883 observations from Mediterranean breed buffaloes. With the purpose to estimate variance and covariance, bivariate analyses were performed using Gibbs sampler that is included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, maternal environmental random effect and contemporary group as fixed effect. The convergence diagnosis was achieved using Geweke, a method that uses an algorithm implemented in R software through the package Bayesian Output Analysis. The calculated direct genetic correlations were 0.34 (BW-W205), 0.25 (BW-W365) and 0.74 (W205-W365). The environmental correlations were 0.12, 0.11 and 0.72 between BW-W205, BW-W365 and W205-W365, respectively. The phenotypic correlations were low for BW-W205 (0.01) and BW-W365 (0.04), differently than the obtained for W205-W365 with a value of 0.67. The results indicate that BW trait have low genetic, environmental and phenotypic association with the two others traits. The genetic correlation between W205 and W365 was high and suggests that the selection for weight at around 205 days could be beneficial to accelerate the genetic gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the study was to estimate heritability and repeatability for milk yield (MY) and lactation length (LL) in buffaloes using Bayesian inference. The Brazilian genetic improvement program of buffalo provided the data that included 628 females, from four herds, born between 1980 and 2003. In order to obtain the estimates of variance, univariate analyses were performed with the Gibbs sampler, using the MTGSAM software. The model for MY and LL included direct genetic additive and permanent environment as random effects, and contemporary groups, milking frequency and calving number as fixed effects. The convergence diagnosis was performed with the Geweke method using an algorithm implemented in R software through the package Bayesian Output Analysis. Average for milk yield and lactation length was 1,546.1 +/- 483.8 kg and 252.3 +/- 42.5 days, respectively. The heritability coefficients were 0.31 (mode), 0.35 (mean) and 0.34 (median) for MY and 0.11 (mode), 0.10 (mean) and 0.10 (median) for LL. The repeatability coefficient (mode) were 0.50 and 0.15 for MY and LL, respectively. Milk yield is the only trait with clear potential for genetic improvement by direct genetic selection. The repeatability for MY indicates that selection based on the first lactation could contribute for an improvement in this trait.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important goal of Zebu breeding programs is to improve reproductive performance. A major problem faced with the genetic improvement of reproductive traits is that recording the time for an animal to reach sexual maturity is costly. Another issue is that accurate estimates of breeding values are obtained only a long time after the young bulls have gone through selection. An alternative to overcome these problems is to use traits that are indicators of the reproductive efficiency of the herd and are easier to measure, such as age at first calving. Another problem is that heifers that have conceived once may fail to conceive in the next breeding season, which increases production costs. Thus, increasing heifer's rebreeding rates should improve the economic efficiency of the herd. Response to selection for these traits tends to be slow, since they have a low heritability and phenotypic information is provided only later in the life of the animal. Genome-wide association studies (GWAS) are useful to investigate the genetic mechanisms that underlie these traits by identifying the genes and metabolic pathways involved. Data from 1853 females belonging to the Agricultural Jacarezinho LTDA were used. Genotyping was performed using the BovineHD BeadChip (777 962 single nucleotide polymorphisms (SNPs)) according to the protocol of Illumina - Infinium Assay II ® Multi-Sample HiScan with the unit SQ ™ System. After quality control, 305 348 SNPs were used for GWAS. Forty-two and 19 SNPs had a Bayes factor greater than 150 for heifer rebreeding and age at first calving, respectively. All significant SNPs for age at first calving were significant for heifer rebreeding. These 42 SNPs were next or within 35 genes that were distributed over 18 chromosomes and comprised 27 protein-encoding genes, six pseudogenes and two miscellaneous noncoding RNAs. The use of Bayes factor to determine the significance of SNPs allowed us to identify two sets of 42 and 19 significant SNPs for heifer rebreeding and age at first calving, respectively, which explain 11.35 % and 6.42 % of their phenotypic variance, respectively. These SNPs provide relevant information to help elucidate which genes affect these traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease. Findings For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects. Conclusions For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A marker that is strongly associated with outcome (or disease) is often assumed to be effective for classifying individuals according to their current or future outcome. However, for this to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiological studies. An illustration of the relationship between odds ratios and receiver operating characteristic (ROC) curves shows, for example, that a marker with an odds ratio as high as 3 is in fact a very poor classification tool. If a marker identifies 10 percent of controls as positive (false positives) and has an odds ratio of 3, then it will only correctly identify 25 percent of cases as positive (true positives). Moreover, the authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker’s ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described. The serious pitfalls of using more traditional methods based on parameters in logistic regression models are illustrated.