948 resultados para Bax and apoptosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. METHODS: To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose-response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. RESULTS: Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose-response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. CONCLUSION: Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium accumulation is secondary to cell suffering and/or cell death. Local accumulation of ammonium in CNS, that may remain undetected in plasma and urine, may therefore play a key role in the neuropathogenesis of methylmalonic aciduria both during acute decompensations and in chronic phases. If confirmed in vivo, this finding might shift the current paradigm and result in novel therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which increased apoptosis and decreased apoptotic cells removal has been described as most relevant in the pathogenesis. Long-chain acyl-coenzyme A synthetases (ACSLs) have been involved in the immunological dysfunction of mouse models of lupus-like autoimmunity and apoptosis in different in vitro cell systems. The aim of this work was to assess among the ACSL isoforms the involvement of ACSL2, ACSL4 and ACSL5 in SLE pathogenesis. FINDINGS: With this end, we determined the ACSL2, ACSL4 and ACSL5 transcript levels in peripheral blood mononuclear cells (PBMCs) of 45 SLE patients and 49 healthy controls by quantitative real time-PCR (q-PCR). We found that patients with SLE had higher ACSL5 transcript levels than healthy controls [median (range), healthy controls =16.5 (12.3-18.0) vs. SLE = 26.5 (17.8-41.7), P = 3.9x10 E-5] but no differences were found for ACSL2 and ACSL4. In in vitro experiments, ACSL5 mRNA expression was greatly increased when inducing apoptosis in Jurkat T cells and PBMCs by Phorbol-Myristate-Acetate plus Ionomycin (PMA+Io). On the other hand, short interference RNA (siRNA)-mediated silencing of ACSL5 decreased induced apoptosis in Jurkat T cells up to the control levels as well as decreased mRNA expression of FAS, FASLG and TNF. CONCLUSIONS: These findings indicate that ACSL5 may play a role in the apoptosis that takes place in SLE. Our results point to ACSL5 as a potential novel functional marker of pathogenesis and a possible therapeutic target in SLE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ß-catenin is a multifunctional protein involved in cell-cell adhesion and Wnt signal transduction. ß-Catenin signaling has been proposed to act as inducer of cell proliferation in different tumors. However, in some developmental contexts and cell systems ß-catenin also acts as a positive modulator of apoptosis. To get additional insights into the role of ß-Catenin in the regulation of the cell cycle and apoptosis, we have analyzed the levels and subcellular localization of endogenous ß-catenin and its relation with adenomatous polyposis coli (APC) during the cell cycle in S-phase¿synchronized epithelial cells. ß-Catenin levels increase in S phase, reaching maximum accumulation at late G2/M and then abruptly decreasing as the cells enter into a new G1 phase. In parallel, an increased cytoplasmic and nuclear localization of ß-catenin and APC is observed during S and G2 phases. In addition, strong colocalization of APC with centrosomes, but not ß-catenin, is detected in M phase. Interestingly, overexpression of a stable form of ß-catenin, or inhibition of endogenous ß-catenin degradation, in epidermal keratinocyte cells induces a G2 cell cycle arrest and leads to apoptosis. These results support a role for ß-catenin in the control of cell cycle and apoptosis at G2/M in normal and transformed epidermal keratinocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of the C/EBP homologous protein (CHOP) is considered a key event for endoplasmic reticulum (ER) stress-mediated apoptosis. Type 1 diabetes (T1D) is characterized by an autoimmune destruction of the pancreatic β-cells. Pro-inflammatory cytokines are early mediators of β-cell death in T1D. Cytokines induce ER stress and CHOP overexpression in β-cells, but the role for CHOP overexpression in cytokine-induced β-cell apoptosis remains controversial. We presently observed that CHOP knockdown (KD) prevents cytokine-mediated degradation of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1), thereby decreasing the cleavage of executioner caspases 9 and 3, and apoptosis. Nuclear factor-κB (NF-κB) is a crucial transcription factor regulating β-cell apoptosis and inflammation. CHOP KD resulted in reduced cytokine-induced NF-κB activity and expression of key NF-κB target genes involved in apoptosis and inflammation, including iNOS, FAS, IRF-7, IL-15, CCL5 and CXCL10. This was due to decreased IκB degradation and p65 translocation to the nucleus. The present data suggest that CHOP has a dual role in promoting β-cell death: (1) CHOP directly contributes to cytokine-induced β-cell apoptosis by promoting cytokine-induced mitochondrial pathways of apoptosis; and (2) by supporting the NF-κB activation and subsequent cytokine/chemokine expression, CHOP may contribute to apoptosis and the chemo attraction of mononuclear cells to the islets during insulitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 3D in vitro model of rat organotypic brain cell cultures in aggregates was used to investigate neurotoxicity mechanisms in methylmalonic aciduria. 1 mM methylmalonate (MMA), 2-methylcitrate (2-MCA) or propionate (PA) were repeatedly added to the culture media at two different time points of the cultures. In cultures treated with 2-MCA, we observed a significant increase of lactate in the medium, consistent with a possible inhibition of Krebs cycle and respiratory chain, as described earlier in the literature. Interestingly, we further observed that 2-MCA induced an important increase in ammonia production with concomitant decrease of glutamine concentrations, which suggests an inhibition of the astrocytic enzyme glutamine synthetase. These previously unreported findings may uncover a pathogenic mechanism in this disease with deleterious effects on early stages of brain development. By immunohistochemistry we could show that 2-MCA substantially increased the number of apoptotic cells. On the cellular level, 2-MCA had a toxic effect (cell swelling and cell death) on glial cells, but not on neurons. Surprisingly, MMA seemed to have a growth stimulating effect on the cultures. We can conclude that 2-MCA was the most toxic metabolite in our model for methylmalonic aciduria inducing ammonia accumulation and massive apoptosis in brain cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. METHODS AND FINDINGS: Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. CONCLUSIONS: We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that oval cells harboring a genetically inactivated Met tyrosine kinase (Met−/− oval cells) are more sensitive to TGF-β-induced apoptosis than cells expressing a functional Met (Metflx/flx), demonstrating that the HGF/Met axis plays a pivotal role in oval cell survival. Here, we have examined the mechanism behind this effect and have found that TGF-β induced a mitochondria-dependent apoptotic cell death in Metflx/flx and Met−/− oval cells, associated with a marked increase in levels of the BH3-only proteins Bim and Bmf. Bmf plays a key role during TGF-β-mediated apoptosis since knocking down of BMF significantly diminished the apoptotic response in Met-/- oval cells. TGF-β also induced oxidative stress accompanied by NADPH oxidase 4 (Nox4) mRNA up-regulation and decreased protein levels of antioxidant enzymes. Antioxidants inhibit both TGF-β-induced caspase 3 activity and Bmf up-regulation, revealing an oxidative stress-dependent Bmf regulation by TGF-β. Notably, oxidative stress-related events were strongly amplified in Met−/− oval cells, emphasizing the critical role of Met in promoting survival. Pharmacological inhibition of PI3K did impair HGF-driven protection from TGF-β-induced apoptosis and increased sensitivity of Metflx/flx oval cells to TGF-ß by enhancing oxidative stress, reaching apoptotic indices similar to those obtained in Met−/− oval cells. Interestingly, both PI3K inhibition and/or knockdown itself resulted in caspase-3 activation and loss of viability in Metflx/flx oval cells, whereas no effect was observed in Met−/− oval cells. Altogether, results presented here provide solid evidences that both paracrine and autocrine HGF/Met signaling requires PI3K to promote mouse hepatic oval cell survival against TGF-β-induced oxidative stress and apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The TP53 induced glycolysis and apoptosis regulator (TIGAR) functions to lower fructose-2,6-bisphosphate (Fru-2,6-P2) levels in cells, consequently decreasing glycolysis and leading to the scavenging of reactive oxygen species (ROS), which correlate with a higher resistance to cell death. The decrease in intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic lesions. Given these good prospects of TIGAR for metabolic regulation and p53-response modulation, we analyzed the effects of TIGAR knockdown in U87MG and T98G glioblastoma-derived cell lines. Methods/results: After TIGAR-knockdown in glioblastoma cell lines, different metabolic parameters were assayed, showing an increase in Fru-2,6-P2, lactate and ROS levels, with a concomitant decrease in reduced glutathione (GSH) levels. In addition, cell growth was inhibited without evidence of apoptotic or autophagic cell death. In contrast, a clear senescent phenotype was observed. We also found that TIGAR protein levels were increased shortly after irradiation. In addition, avoiding radiotherapy-triggered TIGAR induction by gene silencing resulted in the loss of capacity of glioblastoma cells to form colonies in culture and the delay of DNA repair mechanisms, based in c-H2AX foci, leading cells to undergo morphological changes compatible with a senescent phenotype. Thus, the results obtained raised the possibility to consider TIGAR as a therapeutic target to increase radiotherapy effects. Conclusion: TIGAR abrogation provides a novel adjunctive therapeutic strategy against glial tumors by increasing radiation-induced cell impairment, thus allowing the use of lower radiotherapeutic doses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym). The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ciliary neurotrophic factor (CNTF) is a cytokine that plays a neuroprotective role in relation to axotomized motoneurons. We determined the effect of daily subcutaneous doses of CNTF (1.2 µg/g for 5 days; N = 13) or PBS (N = 13) on the levels of mRNA for Bcl-2 and Bax, as well as the expression and inter-association of Bcl-2 and Bax proteins, and the survival of motoneurons in the spinal cord lumbar enlargement of 2-day-old Wistar rats after sciatic nerve transection. Five days after transection, the effects were evaluated on histological and molecular levels using Nissl staining, immunoprecipitation, Western blot analysis, and reverse transcriptase-polymerase chain reaction. The motoneuron survival ratio, defined as the ratio between the number of motoneurons counted on the lesioned side vs those on the unlesioned side, was calculated. This ratio was 0.77 ± 0.02 for CNTF-treated rats vs 0.53 ± 0.02 for the PBS-treated controls (P < 0.001). Treatment with CNTF modified the level of mRNA, with the expression of Bax RNA decreasing 18% (with a consequent decrease in the level of Bax protein), while the expression of Bcl-2 RNA was increased 87%, although the level of Bcl-2 protein was unchanged. The amount of Bcl-2/Bax heterodimer increased 91% over that found in the PBS-treated controls. These data show, for the first time, that the neuroprotective effect of CNTF on neonatal rat axotomized motoneurons is associated with a reduction in free Bax, due to the inhibition of Bax expression, as well as increased Bcl-2/Bax heterodimerization. Thus, the neuroprotective action of the CNTF on axotomized motoneurons can be related to the inhibition of this apoptotic pathway.