984 resultados para Basis functions


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a new method using radial basis neural networks in order to find the classification and the recognition of trees species for forest inventories. This method computes the wood volume using a set of data easily obtained. The results that are obtained improve the used classic and statistical models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Causal inference with a continuous treatment is a relatively under-explored problem. In this dissertation, we adopt the potential outcomes framework. Potential outcomes are responses that would be seen for a unit under all possible treatments. In an observational study where the treatment is continuous, the potential outcomes are an uncountably infinite set indexed by treatment dose. We parameterize this unobservable set as a linear combination of a finite number of basis functions whose coefficients vary across units. This leads to new techniques for estimating the population average dose-response function (ADRF). Some techniques require a model for the treatment assignment given covariates, some require a model for predicting the potential outcomes from covariates, and some require both. We develop these techniques using a framework of estimating functions, compare them to existing methods for continuous treatments, and simulate their performance in a population where the ADRF is linear and the models for the treatment and/or outcomes may be misspecified. We also extend the comparisons to a data set of lottery winners in Massachusetts. Next, we describe the methods and functions in the R package causaldrf using data from the National Medical Expenditure Survey (NMES) and Infant Health and Development Program (IHDP) as examples. Additionally, we analyze the National Growth and Health Study (NGHS) data set and deal with the issue of missing data. Lastly, we discuss future research goals and possible extensions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho objetiva avaliar o desempenho do MECID (Método dos Elementos de Contorno com Interpolação Direta) para resolver o termo integral referente à inércia na Equação de Helmholtz e, deste modo, permitir a modelagem do Problema de Autovalor assim como calcular as frequências naturais, comparando-o com os resultados obtidos pelo MEF (Método dos Elementos Finitos), gerado pela Formulação Clássica de Galerkin. Em primeira instância, serão abordados alguns problemas governados pela equação de Poisson, possibilitando iniciar a comparação de desempenho entre os métodos numéricos aqui abordados. Os problemas resolvidos se aplicam em diferentes e importantes áreas da engenharia, como na transmissão de calor, no eletromagnetismo e em problemas elásticos particulares. Em termos numéricos, sabe-se das dificuldades existentes na aproximação precisa de distribuições mais complexas de cargas, fontes ou sorvedouros no interior do domínio para qualquer técnica de contorno. No entanto, este trabalho mostra que, apesar de tais dificuldades, o desempenho do Método dos Elementos de Contorno é superior, tanto no cálculo da variável básica, quanto na sua derivada. Para tanto, são resolvidos problemas bidimensionais referentes a membranas elásticas, esforços em barras devido ao peso próprio e problemas de determinação de frequências naturais em problemas acústicos em domínios fechados, dentre outros apresentados, utilizando malhas com diferentes graus de refinamento, além de elementos lineares com funções de bases radiais para o MECID e funções base de interpolação polinomial de grau (um) para o MEF. São geradas curvas de desempenho através do cálculo do erro médio percentual para cada malha, demonstrando a convergência e a precisão de cada método. Os resultados também são comparados com as soluções analíticas, quando disponíveis, para cada exemplo resolvido neste trabalho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/ diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radial basis functions are being used in different scientific areas in order to reproduce the geometrical modeling of an object/structure, as well as to predict its behavior. Due to its characteristics, these functions are well suited for meshfree modeling of physical quantities, which for instances can be associated to the data sets of 3D laser scanning point clouds. In the present work the geometry of a structure is modeled by using multiquadric radial basis functions, and its configuration is further optimized in order to obtain better performances concerning to its static and dynamic behavior. For this purpose the authors consider the particle swarm optimization technique. A set of case studies is presented to illustrate the adequacy of the meshfree model used, as well as its link to particle swarm optimization technique. © 2014 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper suggests a simple method based on Chebyshev approximation at Chebyshev nodes to approximate partial differential equations. The methodology simply consists in determining the value function by using a set of nodes and basis functions. We provide two examples. Pricing an European option and determining the best policy for chatting down a machinery. The suggested method is flexible, easy to program and efficient. It is also applicable in other fields, providing efficient solutions to complex systems of partial differential equations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is specially suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing to estimate VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work provides a generalization of Mayer's energy decomposition for the density-functional theory (DFT) case. It is shown that one- and two-atom Hartree-Fock energy components in Mayer's approach can be represented as an action of a one-atom potential VA on a one-atom density ρ A or ρ B. To treat the exchange-correlation term in the DFT energy expression in a similar way, the exchange-correlation energy density per electron is expanded into a linear combination of basis functions. Calculations carried out for a number of density functionals demonstrate that the DFT and Hartree-Fock two-atom energies agree to a reasonable extent with each other. The two-atom energies for strong covalent bonds are within the range of typical bond dissociation energies and are therefore a convenient computational tool for assessment of individual bond strength in polyatomic molecules. For nonspecific nonbonding interactions, the two-atom energies are low. They can be either repulsive or slightly attractive, but the DFT results more frequently yield small attractive values compared to the Hartree-Fock case. The hydrogen bond in the water dimer is calculated to be between the strong covalent and nonbonding interactions on the energy scale

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The network revenue management (RM) problem arises in airline, hotel, media,and other industries where the sale products use multiple resources. It can be formulatedas a stochastic dynamic program but the dynamic program is computationallyintractable because of an exponentially large state space, and a number of heuristicshave been proposed to approximate it. Notable amongst these -both for their revenueperformance, as well as their theoretically sound basis- are approximate dynamic programmingmethods that approximate the value function by basis functions (both affinefunctions as well as piecewise-linear functions have been proposed for network RM)and decomposition methods that relax the constraints of the dynamic program to solvesimpler dynamic programs (such as the Lagrangian relaxation methods). In this paperwe show that these two seemingly distinct approaches coincide for the network RMdynamic program, i.e., the piecewise-linear approximation method and the Lagrangianrelaxation method are one and the same.