978 resultados para Barrier effects
Resumo:
Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.
The health effects of temperature : current estimates, future projections, and adaptation strategies
Resumo:
Climate change is expected to be one of the biggest global health threats in the 21st century. In response to changes in climate and associated extreme events, public health adaptation has become imperative. This thesis examined several key issues in this emerging research field. The thesis aimed to identify the climate-health (particularly temperature-health) relationships, then develop quantitative models that can be used to project future health impacts of climate change, and therefore help formulate adaptation strategies for dealing with climate-related health risks and reducing vulnerability. The research questions addressed by this thesis were: (1) What are the barriers to public health adaptation to climate change? What are the research priorities in this emerging field? (2) What models and frameworks can be used to project future temperature-related mortality under different climate change scenarios? (3) What is the actual burden of temperature-related mortality? What are the impacts of climate change on future burden of disease? and (4) Can we develop public health adaptation strategies to manage the health effects of temperature in response to climate change? Using a literature review, I discussed how public health organisations should implement and manage the process of planned adaptation. This review showed that public health adaptation can operate at two levels: building adaptive capacity and implementing adaptation actions. However, there are constraints and barriers to adaptation arising from uncertainty, cost, technologic limits, institutional arrangements, deficits of social capital, and individual perception of risks. The opportunities for planning and implementing public health adaptation are reliant on effective strategies to overcome likely barriers. I proposed that high priorities should be given to multidisciplinary research on the assessment of potential health effects of climate change, projections of future health impacts under different climate and socio-economic scenarios, identification of health cobenefits of climate change policies, and evaluation of cost-effective public health adaptation options. Heat-related mortality is the most direct and highly-significant potential climate change impact on human health. I thus conducted a systematic review of research and methods for projecting future heat-related mortality under different climate change scenarios. The review showed that climate change is likely to result in a substantial increase in heatrelated mortality. Projecting heat-related mortality requires understanding of historical temperature-mortality relationships, and consideration of future changes in climate, population and acclimatisation. Further research is needed to provide a stronger theoretical framework for mortality projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution and mortality displacement. Most previous studies were designed to examine temperature-related excess deaths or mortality risks. However, if most temperature-related deaths occur in the very elderly who had only a short life expectancy, then the burden of temperature on mortality would have less public health importance. To guide policy decisions and resource allocation, it is desirable to know the actual burden of temperature-related mortality. To achieve this, I used years of life lost to provide a new measure of health effects of temperature. I conducted a time-series analysis to estimate years of life lost associated with changes in season and temperature in Brisbane, Australia. I also projected the future temperaturerelated years of life lost attributable to climate change. This study showed that the association between temperature and years of life lost was U-shaped, with increased years of life lost on cold and hot days. The temperature-related years of life lost will worsen greatly if future climate change goes beyond a 2 °C increase and without any adaptation to higher temperatures. The excess mortality during prolonged extreme temperatures is often greater than the predicted using smoothed temperature-mortality association. This is because sustained period of extreme temperatures produce an extra effect beyond that predicted by daily temperatures. To better estimate the burden of extreme temperatures, I estimated their effects on years of life lost due to cardiovascular disease using data from Brisbane, Australia. The results showed that the association between daily mean temperature and years of life lost due to cardiovascular disease was U-shaped, with the lowest years of life lost at 24 °C (the 75th percentile of daily mean temperature in Brisbane), rising progressively as temperatures become hotter or colder. There were significant added effects of heat waves, but no added effects of cold spells. Finally, public health adaptation to hot weather is necessary and pressing. I discussed how to manage the health effects of temperature, especially with the context of climate change. Strategies to minimise the health effects of high temperatures and climate change can fall into two categories: reducing the heat exposure and managing the health effects of high temperatures. However, policy decisions need information on specific adaptations, together with their expected costs and benefits. Therefore, more research is needed to evaluate cost-effective adaptation options. In summary, this thesis adds to the large body of literature on the impacts of temperature and climate change on human health. It improves our understanding of the temperaturehealth relationship, and how this relationship will change as temperatures increase. Although the research is limited to one city, which restricts the generalisability of the findings, the methods and approaches developed in this thesis will be useful to other researchers studying temperature-health relationships and climate change impacts. The results may be helpful for decision-makers who develop public health adaptation strategies to minimise the health effects of extreme temperatures and climate change.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that are used to prevent errant vehicles from penetrating into temporary construction zones on roadways. A numerical model of the composite PWFB, consisting of a plastic shell, steel frame, water and foam was developed and validated against results from full scale experimental tests. This model can be extended to larger scale impact cases, specifically ones that include actual vehicle models. The cost-benefit of having a validated numerical model is significant and this allows the road barrier designer to conduct extensive tests via numerical simulations prior to standard impact tests Effects of foam cladding as additional energy absorption material in the PWFB was investigated. Different types of foam were treated and it was found that XPS foam was the most suitable foam type. Results from this study will aid PWFB designers in developing new generation of roadside structures which will provide enhanced road safety.
Resumo:
Climate change is emerging as the single greatest threat to coral-reef ecosystems.The most immediate impacts will be a loss of diversity and changes to fish community composition and may lead to eventual declines in abundance and productivity of key fisheries species. A key component of this research is to assess effects of projected changes in environmental conditions (temperature and ocean acidity) due to climate change on reproduction, growth and development of coral trout (Plectropomus leopardis).Ultimately, this research will fill key knowledge gaps about climate change impacts on larger fishes, which are fundamental to optimizing resilience-based management, and in turn improve the adaptive capacity of industries and communities along the Great Barrier Reef.
Resumo:
An ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Region was undertaken in 2010 and 2011. It assessed the risks posed by this fishery to achieving fishery-related and broader ecological objectives of both the Queensland and Australian governments, including risks to the values and integrity of the Great Barrier Reef World Heritage Area. The risks assessed included direct and indirect effects on the species caught in the fishery as well as on the structure and functioning of the ecosystem. This ecosystem-based approach included an assessment of the impacts on harvested species, by-catch, species of conservation concern, marine habitats, species assemblages and ecosystem processes. The assessment took into account current management arrangements and fishing practices at the time of the assessment. The main findings of the assessment were: Current risk levels from trawling activities are generally low. Some risks from trawling remain. Risks from trawling have reduced in the Great Barrier Reef Region. Trawl fishing effort is a key driver of ecological risk. Zoning has been important in reducing risks. Reducing identified unacceptable risks requires a range of management responses. The commercial fishing industry is supportive and being proactive. Further reductions in trawl by-catch, high compliance with rules and accurate information from ongoing risk monitoring are important. Trawl fishing is just one of the sources of risk to the Great Barrier Reef.
Resumo:
The major banana production areas in Australia are particularly sensitive to environments due to their close proximity to areas of World Heritage rainforest and the Great Barrier Reef catchment. Management of soil quality, nutrients and pesticides are vital to maintaining the integrity of these sensitive areas. Studies on cropping systems have suggested that integrating organic matter into ground cover management would improve the quality of soil under banana cultivation. In this study, an alternative management practice for bananas, which addresses the management of organic matter and fertiliser application, was assessed and compared to the conventional practice currently employed in the banana industry. Several chemical, physical and biological soil parameters were measured including: pH, electrical conductivity, water stable aggregates, bulk density, water filled pore space, porosity, water content, fluorescein diacetate hydrolyis (FDA) and beta-glucosidase activity. The alternative management practice did not have a significant impact of the production and growth of bananas but overall improved the quality of the soil. Although some differences were observed, the chemical and physical soil characteristics did not differ dramatically between the two management systems. The addition of organic matter resulted in the soil under alternative practice having higher FDA and beta-glucosidase levels, indicating higher microbial activity. The integration of organic matter into the management of bananas resulted in positive benefits on soil properties under bananas, however, methods of maintaining organic matter in the soil need to be further researched.
Resumo:
Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.
Resumo:
Objective: Patients with atopic dermatitis often have a poor long-term response to conventional topical or systemic treatments. Staphylococcal superinfections, skin atrophy due to corticosteroid use, and asthma and allergic rhinitis are common. Only a few, usually short-term, studies have addressed the effects of different treatments on these problems. Tacrolimus ointment is the first topical compound suitable for long-term treatment. The aim of this thesis was to evaluate the effects of long-term topical tacrolimus treatment on cutaneous staphylococcal colonization, collagen synthesis, and symptoms and signs of asthma and allergic rhinitis. Methods: Patients with moderate-to-severe atopic dermatitis were treated with intermittent 0.1% tacrolimus ointment in prospective, open studies lasting for 6 to 48 months. In Study I, cutaneous staphylococcal colonization was followed for 6 to 12 months. In Study II, skin thickness and collagen synthesis were followed by skin ultrasound and procollagen I and III propeptide concentrations of suction blister fluid samples for 12 to 24 months and compared with a group of corticosteroid-treated atopic dermatitis patients and with a group of healthy subjects. Study III was a cross-sectional study of the occurrence of respiratory symptoms, bronchial hyper-responsiveness, and sputum eosinophilia in atopic dermatitis patients and healthy controls. In Study V, the same parameters as in Study III were assessed in atopic dermatitis patients before and after 12 to 48 months of topical tacrolimus treatment. Study IV was a retrospective follow-up of the effect of tacrolimus 0.03% ointment on severe atopic blepharoconjunctivitis and conjunctival cytology. Results: The clinical response to topical tacrolimus was very good in all studies (p≤0.008). Staphylococcal colonization decreased significantly, and the effect was sustained throughout the study (p=0.01). Skin thickness (p<0.001) and markers of collagen synthesis (p<0.001) increased in the tacrolimus-treated patients significantly, whereas they decreased or remained unchanged in the corticosteroid-treated controls. Symptoms of asthma and allergic rhinitis (p<0.0001), bronchial hyper-responsiveness (p<0.0001), and sputum eosinophilia (p<0.0001) were significantly more common in patients with atopic dermatitis than in healthy controls, especially in subjects with positive skin prick tests or elevated serum immunoglobulin E. During topical tacrolimus treatment the asthma and rhinitis (p=0.005 and p=0.002) symptoms and bronchial hyper-responsiveness (p=0.02) decreased significantly, and serum immunoglobulin E and sputum eosinophils showed a decreasing trend in patients with the best treatment response. Treatment of atopic blepharoconjunctivitis resulted in a marked clinical response and a significant decrease in eosinophils, lymphocytes, and neutrophils in the conjunctival cytology samples. No significant adverse effects or increase in skin infections occurred in any study. Conclusions: The studies included in this thesis, except the study showing an increase in skin collagen synthesis in tacrolimus-treated patients, were uncontrolled, warranting certain reservations. The results suggest, however, that tacrolimus ointment has several beneficial effects in the long-term intermittent treatment of atopic dermatitis. Tacrolimus ointment efficiently suppresses the T cell-induced inflammation of atopic dermatitis. It has a normalizing effect on the function of the skin measured by the decrease in staphylococcal colonization. It does not cause skin atrophy as do corticosteroids but restores the skin collagen synthesis in patients who have used corticosteroids. Tacrolimus ointment has no marked systemic effect, as the absorption of the drug is minimal and decreases along with skin improvement. The effects on the airway: decrease in bronchial hyper-responsiveness and respiratory symptoms, can be speculated to be caused by the decrease in T cell trafficking from the skin to the respiratory tissues as the skin inflammation resolves, as well as inhibition of epicutaneous invasion of various antigens causing systemic sensitization when the skin barrier is disrupted as in atopic dermatitis. Patients with moderate-to-severe atopic dermatitis seem to benefit from efficient long-term treatment with topical tacrolimus.
Resumo:
The geometries of alpha- and beta-silyl substituted vinyl radicals and of alpha,beta-disilylvinyl radical have been optimised with the STO-3G and the STO-3G* basis sets. The relative stabilities of various conformers have been determined at the UMP2/6-31G* level. The stabilisation of vinyl radicals through alpha-silyl substitution is larger than that due to corresponding alkyl groups. The presence of an alpha-silyl group also leads to a tendency towards linearisation of the vinyl radical centre and a corresponding reduction in the inversion barrier. In marked contrast, the beta-silyl effect is negligible. The geometric, conformational and energetic consequences are insignificant. Overall, the silyl substituent effect at vinyl radicals is very different from that computed earlier for the vinyl cations, but qualitatively similar to that found in carbanions.
Resumo:
Recent studies have demonstrated that solvation dynamics in many common dipolar liquids contain an initial, ultrafast Gaussian component which may contribute even more than 60% to the total solvation energy. It is also known that adiabatic electron transfer reactions often probe the high-frequency components of the relevant solvent friction (Hynes, J. T. J. Phys. Chem. 1986, 90, 3701). In this paper, we present a theoretical study of the effects of the ultrafast solvent polar modes on the adiabatic electron transfer reactions by using the formalism of Hynes. Calculations have been carried out for a model system and also for water and acetonitrile. It is found that, in general, the ultrafast modes can greatly enhance the rate of electron transfer, even by more than an order of magnitude, over the rate obtained by using only the slow overdamped modes usually considered. For water, this acceleration of the rate can be attributed to the high-frequency intermolecular vibrational and librational modes. For a weakly adiabatic reaction, the rate is virtually indistinguishable from the rate predicted by the Marcus transition state theory. Another important result is that even in this case of ultrafast underdamped solvation, energy diffusion appears to be efficient so that electron transfer reaction in water is controlled essentially by the barrier crossing dynamics. This is because the reactant well frequency is-directly proportional to the rate of the initial Gaussian decay of the solvation time correlation function. As a result, the value of the friction at the reactant well frequency rarely falls below the value required for the Kramers turnover except when the polarizability of the water molecules may be neglected. On the other hand, in acetonitrile, the rate of electron transfer reaction is found to be controlled by the energy diffusion dynamics, although a significant contribution to the rate comes also from the barrier crossing rate. Therefore, the present study calls for a need to understand the relaxation of the high-frequency modes in dipolar liquids.
Resumo:
Various structural, dynamic and thermodynamic properties of water molecules confined in single-wall carbon nanotubes (CNTs) are investigated using both polarizable and non-polarizable water models. The inclusion of polarizability quantitatively affects the nature of hydrogen bonding, which governs many properties of confined water molecules. Polarizable water leads to tighter hydrogen bonding and makes the distance between neighboring water molecules shorter than that for non-polarizable water. Stronger hydrogen bonding also decreases the rotational entropy and makes the diffusion constant smaller than in TIP3P and TIP3PM water models. The reorientational dynamics of the water molecules is governed by a jump mechanism, the barrier for the jump being highest for the polarizable water model. Our results highlight the role of polarizability in governing the dynamics of confined water and demonstrate that the inclusion of polarizability is necessary to obtain agreement with the results of ab initio simulations for the distributions of waiting and jump times. The SPC/E water model is found to predict various water properties in close agreement with the results of polarizable water models with much lower computational costs.
Resumo:
Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The nature of interaction between a heteronucleating agent (graphene oxide, GO) and a strongly polar macromolecule (poly(ethylenimine), PEI) with poly(vinylidene fluoride) (PVDF) influencing the crystalline structure and morphology has been systematically investigated in this work. PEI interacts with PVDF via ion-dipole interaction, which helps in lowering the free energy barrier for nucleation thereby promoting faster crystallization. In contrast, besides interacting with PVDF, GO also promotes heteronucleation in PVDF. We observed that both GO and PEI have very different effects on the overall crystalline morphology of PVDF. For instance, the neat PVDF showed a mixture of both alpha and beta phases when cooled from the melt. However, incorporation of 0.1 wt % GO resulted in phase transformation from the stable alpha-phase to polar beta-polymorph in PVDF. In contrast, PEI, which also resulted in faster crystallization in PVDF predominantly, resulted in the stable alpha- phase. Various techniques like Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry were employed to confirm the phase transformations in PVDF. PEI was further grafted onto GO nanosheets to understand the combined effects of both GO and PEI on the polymorphism in PVDF. The PVDF/PEI-GO composite showed a mixture of phases, predominantly rich in a. These phenomenal effects were further analyzed and corroborated with the specific interaction between GO and PEI with PVDF using X-ray photon scattering (XPS) and NMR. In addition, the dielectric permittivity increased significantly in the presence of GO and PEI in the composites. For instance, PVDF/PEI-GO showed the highest permittivity of 39 at 100 Hz.
Resumo:
Studies were carried out to estimate the power input to Dielectric Barrier Discharge (DBD) reactors powered by AC high voltage in the context of their application in non-thermal plasma cleaning of exhaust gases. Power input to the reactors was determined both theoretically and experimentally. Four different reactor geometries energized with 50 Hz and 1.5 kHz AC excitation were considered for the study. The theoretically estimated power using Manley's equation was found to agree with the experimental results. Results show that the analytically computed capacitance, without including the electrode edge effects, gives sufficiently good results that are matching with the measured values. For complex geometries where analytical calculation of capacitance is often difficult, a novel method of estimating the reactor capacitance, and hence the power input to the reactor, was introduced in this paper. The predicted results were validated with experiments.