962 resultados para Barrel cortex
Resumo:
Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in regional cerebral blood flow (CBF). We show that this model can provide excellent fit of the CBF responses for stimulus durations of up to 16 s. The structure of the model consisted of two coupled components representing vascular dilation and constriction. The complex temporal characteristics of the CBF time series were reproduced by the relatively simple balance of these two components. We show that the impulse response obtained under the 16-s duration stimulation condition generalised to provide a good prediction to the data from the shorter duration stimulation conditions. Furthermore, by optimising three out of the total of nine model parameters, the variability in the data can be well accounted for over a wide range of stimulus conditions. By establishing linearity, classic system analysis methods can be used to generate and explore a range of equivalent model structures (e.g., feed-forward or feedback) to guide the experimental investigation of the control of vascular dilation and constriction following stimulation.
Resumo:
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Resumo:
Recent studies have shown that the haemodynamic responses to brief (<2 secs) stimuli can be well characterised as a linear convolution of neural activity with a suitable haemodynamic impulse response. In this paper, we show that the linear convolution model cannot predict measurements of blood flow responses to stimuli of longer duration (>2 secs), regardless of the impulse response function chosen. Modifying the linear convolution scheme to a nonlinear convolution scheme was found to provide a good prediction of the observed data. Whereas several studies have found a nonlinear coupling between stimulus input and blood flow responses, the current modelling scheme uses neural activity as an input, and thus implies nonlinearity in the coupling between neural activity and blood flow responses. Neural activity was assessed by current source density analysis of depth-resolved evoked field potentials, while blood flow responses were measured using laser Doppler flowmetry. All measurements were made in rat whisker barrel cortex after electrical stimulation of the whisker pad for 1 to 16 secs at 5 Hz and 1.2 mA (individual pulse width 0.3 ms).
Resumo:
Studiesthat use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to “negative” hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently withtwo-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gammaband power (30 – 80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.
Resumo:
During this thesis a new telemetric recording system has been developed allowing ECoG/EEG recordings in freely behaving rodents (Lapray et al., 2008; Lapray et al., in press). This unit has been shown to not generate any discomfort in the implanted animals and to allow recordings in a wide range of environments. In the second part of this work the developed technique has been used to investigate what cortical activity was related to the process of novelty detection in rats’ barrel cortex. We showed that the detection of a novel object is accompanied in the barrel cortex by a transient burst of activity in the γ frequency range (40-47 Hz) around 200 ms after the whiskers contact with the object (Lapray et al., accepted). This activity was associated to a decrease in the lower range of γ frequencies (30-37 Hz). This network activity may represent the optimal oscillatory pattern for the propagation and storage of new information in memory related structures. The frequency as well as the timing of appearance correspond well with other studies concerning novelty detection related burst of activity in other sensory systems (Barcelo et al., 2006; Haenschel et al., 2000; Ranganath & Rainer, 2003). Here, the burst of activity is well suited to induce plastic and long-lasting modifications in neuronal circuits (Harris et al., 2003). The debate is still open whether synchronised activity in the brain is a part of information processing or an epiphenomenon (Shadlen & Movshon, 1999; Singer, 1999). The present work provides further evidence that neuronal network activity in the γ frequency range plays an important role in the neocortical processing of sensory stimuli and in higher cognitive functions.
Resumo:
We model experience-dependent plasticity in the cortical representation of whiskers (the barrel cortex) in normal adult rats, and in adult rats that were prenatally exposed to alcohol. Prenatal exposure to alcohol (PAE) caused marked deficits in experience-dependent plasticity in a cortical barrel-column. Cortical plasticity was induced by trimming all whiskers on one side of the face except two. This manipulation produces high activity from the intact whiskers that contrasts with low activity from the cut whiskers while avoiding any nerve damage. By a computational model, we show that the evolution of neuronal responses in a single barrel-column after this sensory bias is consistent with the synaptic modifications that follow the rules of the Bienenstock, Cooper, and Munro (BCM) theory. The BCM theory postulates that a neuron possesses a moving synaptic modification threshold, θM, that dictates whether the neuron's activity at any given instant will lead to strengthening or weakening of its input synapses. The current value of θM changes proportionally to the square of the neuron's activity averaged over some recent past. In the model of alcohol impaired cortex, the effective θM has been set to a level unattainable by the depressed levels of cortical activity leading to “impaired” synaptic plasticity that is consistent with experimental findings. Based on experimental and computational results, we discuss how elevated θM may be related to (i) reduced levels of neurotransmitters modulating plasticity, (ii) abnormally low expression of N-methyl-d-aspartate receptors (NMDARs), and (iii) the membrane translocation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in adult rat cortex subjected to prenatal alcohol exposure.
Resumo:
Functional brain mapping based on changes in local cerebral blood flow (lCBF) or glucose utilization (lCMRglc) induced by functional activation is generally carried out in animals under anesthesia, usually α-chloralose because of its lesser effects on cardiovascular, respiratory, and reflex functions. Results of studies on the role of nitric oxide (NO) in the mechanism of functional activation of lCBF have differed in unanesthetized and anesthetized animals. NO synthase inhibition markedly attenuates or eliminates the lCBF responses in anesthetized animals but not in unanesthetized animals. The present study examines in conscious rats and rats anesthetized with α-chloralose the effects of vibrissal stimulation on lCMRglc and lCBF in the whisker-to-barrel cortex pathway and on the effects of NO synthase inhibition with NG-nitro-l-arginine methyl ester (l-NAME) on the magnitude of the responses. Anesthesia markedly reduced the lCBF and lCMRglc responses in the ventral posteromedial thalamic nucleus and barrel cortex but not in the spinal and principal trigeminal nuclei. l-NAME did not alter the lCBF responses in any of the structures of the pathway in the unanesthetized rats and also not in the trigeminal nuclei of the anesthetized rats. In the thalamus and sensory cortex of the anesthetized rats, where the lCBF responses to stimulation had already been drastically diminished by the anesthesia, l-NAME treatment resulted in loss of statistically significant activation of lCBF by vibrissal stimulation. These results indicate that NO does not mediate functional activation of lCBF under physiological conditions.
Resumo:
Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic range of neuronal activity thus preventing its saturation or total downregulation. Current explanatory models of cortical EDP are almost exclusively neurocentric. However, in recent years, increasing evidence has emerged on the role of astrocytes in brain function, including plasticity. Indeed, astrocytes appear as necessary partners of neurons at the core of the mechanisms of coding and homeostatic plasticity recorded in neurons. In addition to neuronal plasticity, several different forms of astrocytic plasticity have recently been discovered. They extend from changes in receptor expression and dynamic changes in morphology to alteration in gliotransmitter release. It is however unclear how astrocytic plasticity contributes to the neuronal EDP. Here, we review the known and possible roles for astrocytes in the barrel cortex, including its plasticity.
Resumo:
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.
Resumo:
Childhood exposure to low-level lead can permanently reduce intelligence, but the neurobiologic mechanism for this effect is unknown. We examined the impact of lead exposure on the development of cortical columns, using the rodent barrel field as a model. In all areas of mammalian neocortex, cortical columns constitute a fundamental structural unit subserving information processing. Barrel field cortex contains columnar processing units with distinct clusters of layer IV neurons that receive sensory input from individual whiskers. In this study, rat pups were exposed to 0, 0.2, 1, 1.5, or 2 g/liter lead acetate in their dam's drinking water from birth through postnatal day 10. This treatment, which coincides with the development of segregated columns in the barrel field, produced blood lead concentrations from 1 to 31 μg/dl. On postnatal day 10, the area of the barrel field and of individual barrels was measured. A dose-related reduction in barrel field area was observed (Pearson correlation = −0.740; P < 0.001); mean barrel field area in the highest exposure group was decreased 12% versus controls. Individual barrels in the physiologically more active caudoventral group were affected preferentially. Total cortical area measured in the same sections was not altered significantly by lead exposure. These data support the hypothesis that lead exposure may impair the development of columnar processing units in immature neocortex. We demonstrate that low levels of blood lead, in the range seen in many impoverished inner-city children, cause structural alterations in a neocortical somatosensory map.
Resumo:
The objective of this study was to examine the influence of sensory experience on the synaptic circuitry of the cortex. For this purpose, the quantitative distribution of the overall and of the gamma-aminobutyric acid (GABA) population of synaptic contacts was investigated in each layer of the somatosensory barrel field cortex of rats which were sensory deprived from birth by continuously removing rows of whiskers. Whereas there were no statistically significant changes in the quantitative distribution of the overall synaptic population, the number and proportion of GABA-immunopositive synaptic contacts were profoundly altered in layer IV of the somatosensory cortex of sensory-deprived animals. These changes were attributable to a specific loss of as many as two-thirds of the GABA contacts targeting dendritic spines. Thus, synaptic contacts made by GABA terminals in cortical layer IV and, in particular, those targeting dendritic spines represent a structural substrate of experience-dependent plasticity. Furthermore, since in this model of cortical plasticity the neuronal receptive-field properties are known to be affected, we propose that the inhibitory control of dendritic spines is essential for the elaboration of these functional properties.
Resumo:
Résumé Les rongeurs utilisent leurs moustaches (vibrisses) pour explorer le milieu environnant. Chaque moustache est mue par un système des muscles. Les récepteurs situés à sa base transmettent les informations au système nerveux central. La transmission vers l'écorce se fait via trois neurones de relais qui se trouvent au niveau du ganglion trigéminé, du tronc cérébral et du thalamus. La représentation corticale d'une vibrisse est une concentration des axones thalamo-corticaux (ATC) autour desquelles s'organisent leurs cibles, les cellules de la couche IV. La structure peut être identifiée histologiquement en coupes tangentielles et porte le nom de « barrel » (« tonneau »). Cette correspondance vibrisse - barrel fait de ce système un model idéal pour étudier l'influence de l'activité périphérique sur l'établissement et le maintien des cartes somatotopiques. Notre laboratoire dispose d'une souche de souris qui a subi une mutation spontanée pour le gène codant l'adenylyl cyclase I (ACI). Cette enzyme membranaire catalyse la formation de l'AMPc et joue un rôle important dans le guidage axonal, la libération des neurotransmetteurs et l'intégration des signaux postsynaptiques. Nous avons démontré dans un premier temps que cette souris adulte ne développe pas de barrels. Cela est dû à un manque d'organisation des ATC et aussi des cellules de la couche IV. De plus, les résultats électrophysiologiques montrent que les informations venant des vibrisses adjacentes ne sont pas intégrées d'une manière normale. Dans ce travail de thèse, j'ai analysé la morphologie des ATC révélés individuellement avec de la biocytine. L'analyse quantitative des ATC a mis en évidence les points suivants: 1. Les axones de la souris normale (NOR) quittent le thalamus, traversent la capsule interne et la substance blanche sous-corticale et pénètrent dans le cortex somato-sensoriel primaire. A l'intérieur de l'écorce ils traversent au maximum 3 colonnes corticales adjacentes dont une contient le barrel cible. En passant à travers les couches VI et V, ces axones arborisent et convergent progressivement vers le barrel dans lequel ils forment une riche arborisation. Un petit nombre des branches « errantes », pleines de boutons synaptiques, pénètrent dans les barrels voisins. Deux axones NOR provenant de corps cellulaires très proches dans le thalamus peuvent avoir un cheminement très divergent lors de la traversée de la capsule interne et de la substance blanche sous-corticale mais, à leur entrée dans le cortex, ils sont distants d'au maximum 2 colonnes corticales de la colonne qui contient le barrel cible et ils convergent progressivement vers ce barrel. 2. Les axones de la souris mutante (BRL) ont le même trajet sous-cortical que les axones NOR, mais leur entrée dans le cortex somato-sensoriel primaire est aléatoire. A l'interface entre la substance blanche sous-corticale et le cortex, l'axone principal se divise rapidement en troncs axonaux qui traversent les couches VI et V d'une manière divergente pour arriver dans la couche IV. Cela contraste beaucoup avec la trajectoire des NOR qui convergent graduellement vers leur barrel cible. Le nombre de branches radiales que les axones BRL utilisent pour entrer dans le cortex et dans la couche IV est double par rapport aux axones NOR. Parmi ces branches, seules quelques-unes donnent des arborisations, les autres ne sont pas développées et leur morphologie est semblable à celle des branches formées par les axones de la souris normale lors du développement. Deux axones BRL issus de corps cellulaires proches dans le thalamus peuvent avoir une trajectoire très divergente jusqu'à leur entrée dans la couche IV, mais à ce niveau ils sont réorientés pour se retrouver et faire un nombre maximal de branches et boutons synaptiques dans la même région corticale. Dans un cas extrême, un des axones observés est entré dans le cortex à la limite entre l'aire somatosensorielle primaire et secondaire et a parcouru une distance de 2 mm pour retrouver son partenaire thalamique et donner avec celui-ci un nombre maximal de branches dans la même région de la couche IV. 3. Les mesures quantitatives ont montré que les arborisations corticales des axones NOR ont une longueur moyenne de 18mm et sont formées par 200 segments qui portent 1200 boutons synaptiques. Par rapport à la souris NOR, les axones BRL ont en moyenne la même longueur, le même nombre de segments et boutons synaptiques, mais donnent deux fois plus de branches radiales. La surface tangentielle occupée par les arborisations BRL dans la couche IV est 2 fois plus grande que celle des NOR. Cela signifie que les 1000 boutons synaptiques qui caractérisent les arborisations NOR et BRL dans la couche IV sont disséminés sur une surface tangentielle double chez les derniers, et donc que la densité des boutons par unité de surface corticale est en moyenne plus faible. En effet, l'augmentation de la surface corticale tangentielle des BRL est due aux surfaces de faible et moyenne densité synaptique (0 - 8 boutons / 400pn2) qui augmentent 2 fois tandis que les surfaces de haute densité synaptiques (8 - 64 boutons / 4001.tm2) sont les mêmes. Nous émettons l'hypothèse selon laquelle, durant le développement, les ATC de la souris BRL divergent et forment un nombre exubérant de branches. Grâce à cette divergence et aux branches supranuméraires, ils trouvent l'endroit de l'écorce où se trouvent leurs voisins thalamiques et arborisent abondamment dans cette région. Cependant, le déficit en AGI ne leurs permet pas par la suite, sous influence de l'activité périphérique, de retirer les branches qui se trouvent dans les endroits inappropriés de l'écorce, avec de possibles conséquences sur la discrimination tactile.
Resumo:
The segregation of thalamocortical inputs into eye-specific stripes in the developing cat or monkey visual cortex is prevented by manipulations that perturb or abolish neural activity in the visual pathway. Such findings show that proper development of the functional organization of visual cortex is dependent on normal patterns of neural activity. The generalisation of this conclusion to other sensory cortices has been questioned by findings that the segregation of thalamocortical afferents into a somatotopic barrel pattern in developing rodent primary somatosensory cortex (S1) is not prevented by activity blockade. We show that a temporary block of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in rat S1 during the critical period for barrel development disrupts the topographic refinement of thalamocortical connectivity and columnar organization. These effects are evident well after the blockade is ineffective and thus may be permanent. Our findings show that neural activity and specifically the activation of postsynaptic cortical neurons has a prominent role in establishing the primary sensory map in S1, as well as the topographic organization of higher order synaptic connections.
Resumo:
Machado-Joseph disease (MJD/SCA3) is the most frequent spinocerebellar ataxia, characterized by brainstem, basal ganglia and cerebellar damage. Few magnetic resonance imaging based studies have investigated damage in the cerebral cortex. The objective was to determine whether patients with MJD/SCA3 have cerebral cortex atrophy, to identify regions more susceptible to damage and to look for the clinical and neuropsychological correlates of such lesions. Forty-nine patients with MJD/SCA3 (mean age 47.7 ± 13.0 years, 27 men) and 49 matched healthy controls were enrolled. All subjects underwent magnetic resonance imaging scans in a 3 T device, and three-dimensional T1 images were used for volumetric analyses. Measurement of cortical thickness and volume was performed using the FreeSurfer software. Groups were compared using ancova with age, gender and estimated intracranial volume as covariates, and a general linear model was used to assess correlations between atrophy and clinical variables. Mean CAG expansion, Scale for Assessment and Rating of Ataxia (SARA) score and age at onset were 72.1 ± 4.2, 14.7 ± 7.3 and 37.5 ± 12.5 years, respectively. The main findings were (i) bilateral paracentral cortex atrophy, as well as the caudal middle frontal gyrus, superior and transverse temporal gyri, and lateral occipital cortex in the left hemisphere and supramarginal gyrus in the right hemisphere; (ii) volumetric reduction of basal ganglia and hippocampi; (iii) a significant correlation between SARA and brainstem and precentral gyrus atrophy. Furthermore, some of the affected cortical regions showed significant correlations with neuropsychological data. Patients with MJD/SCA3 have widespread cortical and subcortical atrophy. These structural findings correlate with clinical manifestations of the disease, which support the concept that cognitive/motor impairment and cerebral damage are related in disease.
Resumo:
Objectives: Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naive children with MDD to determine whether abnormalities of OFC are present early in the illness course. Methods: Twenty seven medication naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. Results: There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. Conclusions: The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.