967 resultados para Band 3
Resumo:
Three semen samples were collected at 48 It intervals from 20 mature research dogs previously conditioned to manual semen collection. Vasectomy was performed in all dogs, and 15 days after surgery, another three ejaculates were similarly collected. The semen was evaluated, and centrifuged to obtain seminal plasma for measurement of pH, and concentrations of total proteins (TP), total chlorides (Cl), calcium (Ca), potassium (K), and sodium (Na). The seminal plasma protein profile was evaluated by SDS-PAGE; molecular weights and the integrated optical density (IOD) of each band were estimated. There was a negative correlation between K concentration and progressive motility (r = -0.49, P = 0.027), sperm vigor (r = -0.60, P = 0.0053), and plasma integrity, evaluated by both the hypo-osmotic swelling test (r = -0.50, P = 0.026) and a fluorescent stain (r = -0.45, P = 0.046). Positive correlations between Na and K pre- and post-vasectomy (r = 0.88, P < 0.001; r = 0.56, P < 0.01, respectively) were verified. There were a total of 37 bands pre-vasectomy and 35 post-vasectomy (range, 100.6-3.6 kDa). Bands B9 and B13 (42.6 and 29.2 kDa) were not present post-vasectomy. The IOD of band B3 (73.5 kDa) was higher (P 0.03) pre-vasectomy, compared to post-vasectomy; conversely, the IODs of bands B29 and B37 (7.8 and 3.6 kDa) increased (P 0.026 and 0.047). Pre-vasectomy, there was a positive correlation (r = 0.49, P = 0.029) between band B37 band (3.6 kDa) and the Na:K ratio. In conclusion, K appeared to be involved in sperm motility in dogs and could be a tool to evaluate sperm function. The prostate contributed several elements to canine seminal plasma. Vasectomy changed Ca concentrations and the protein profile of the seminal plasma. Further studies must be performed to clarify the function of these elements on the in vivo fertility of dogs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This article describes the structures and functions of the erythrocyte membrane and its importance in transfusional medicine. The erythrocyte membrane is one of the best known membranes in terms of structure, function and genetic disorders. As any other plasma membrane, it mediates transport functions. It also provides the erythrocytes with their resilience and deformability. According to the International Society of Blood Transfusion (ISBT), more than 500 antigens are expressed in the erythrocyte membrane, and around 270 are involved in transfusion reaction cases and hemolytic diseases of the fetus and newborn. In the ISBT classification, the high frequency series is represented by antigens in more than 99% of population (high prevalence antigen). In transfusion, the absence of these antigens determines severe problems as for example, one woman without the P antigen suffered 6 repetitive miscarriages due to placental insufficiency, which was caused by an antibody formed against the absent P antigen. Some important erythrocyte membrane proteins are described here including Band 3, Glycophorins and spectrin. The most abundant integral membrane protein is Band 3 and its main function is to mediate exchange of chloride and bicarbonate anions across the plasma membrane. The second most abundant integral membrane protein in the human erythrocyte is sialoglycoprotein glycophorin A (GPA). With its high sialic acid content, GPA is the main contributor to the net negative cell-surface charge and is thus critical for minimizing cell-cell interactions and preventing red cell aggregation. Glycophorin C (GPC) is the receptor for PfEBP-2 (baebl, EBA-140), the newly identified erythrocyte binding ligand of Plasmodium falciparum. The ternary complex of spectrin, actin and 4.1R defines the nodes of the erythrocyte membrane skeletal network, and is inseparable from membrane stability when under mechanical stress. This erythrocyte membrane review is important for a better understanding of transfusion reactions, where the antibody formation against high prevalence antigens makes compatible transfusions difficult. The study of antigen diversity and biochemical characterization of different proteins will contribute to healthcare, as well as diagnosis, development of technology such as monoclonal antibody production and the therapeutic conduct of many diseases.
Resumo:
New nanocomposites based on bacterial cellulose nanofibers (BCN) and polyurethane (PU) prepolymer were prepared and characterized by SEM, FT-IR, XRD, and TG/DTG analyses. An improvement of the interface reaction between the BCN and the PU prepolymer was obtained by a solvent exchange process. FT-IR results showed the main urethane band at 2,270 cm-1 to PU prepolymer; however, in nanocomposites new bands appear as disubstituted urea at 1,650 and 1,550 cm-1. In addition, the observed decrease in the intensity of the hydroxyl band (3,500 cm-1) suggests an interaction between BCN hydroxyls and NCO-free groups. The nanocomposites presented a non-crystalline character, significant thermal stability (up to 230 °C) and low water absorption when compared to pristine BCN. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Using ELISA technique, natural antibodies against self and non self antigens were determined in 80 patients chronically intected by T. cruzi and 40 individuals suffering from a deep mycosis frequentely found in Latin Amarica (Paracoccidioidomycosis - PCM). Two forms of PCM were investigated: adult forms and juvenil type of disease. Eighty percent (80%) of the former group had significantly elevated anti-laminin antibody levels (M=4.7,SD±1.8) compared with healthy controls and different specificities of antibody were associated with anti-laminin in pathological sera. A notable binding to cytoskeletal proteins was observed, specially with band 3 and their peptides derivates, such as 62 kDa peptide. By means of Protein A chromatography we were able to show that natural anti-Gal antibodies may be bound by their Fab region to other immunoglobulins and/or to Protein A by alternative sites of binding. The finding of lgG anti-Gal antibodies in circulating immune complexes isolated from chagasic sera supported the first alternative. However, it is possible that some of lgG anti-Gal antibodies, belong to VH111 subgroup of immunoglobulins, that bind directly to Protein A. Among the 40 sera from PCM examined, the majority was considered as not exhibiting a signilicantly higher binding than normal sera to antigens tested. However thirty percent (30%) of the chronic patients had an increased levels of natural antibodies at least for one specificity such as actyn, myosin and Gala1,3Gal epitopes. ln juvenil type of PCM the mean value found for actyn was also increased 2,42 (range 1,0 to 5,3). Utilizing the polyethylene glicol precipitation the presence of circulating immune complexes was investigated in PCM sera. Specific antibodies for soluble antigens from P. brasiliensis and natural antibodies against myoglobin, myosin and Gala1,3 Gal epitopes were characterized
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Festkörperunterstützte Lipid-Modellmembranen auf Goldzur Rekonstitution von Membranproteinen Ziel der Arbeit war der Aufbau von Lipid-Modellmembranen auf Goldelektroden in welchen die funktionelle Aktivität von rekonstituierten Membranproteinen über elektrochemische Methoden nachgewiesen werden kann.Im Rahmen der Arbeit wurden Lipidbilayer mit und ohne hydrophile Ethylenglykol-Spacer durch Kombination von Selbstorganisation, Langmuir-Blodgett-Kuhn-Techniken und Vesikelfusion aufgebaut. Dabei dienten Thiolipide zur Verankerung der Membranen auf der Goldelektrode und es wurden diverse Wege verfolgt, deren Ankerdichte auf dem Substrat einzustellen.Eine Studie zum Aufbau von festkörperunterstützten Lipidbilayern durch Fusion von Vesikeln auf binäre Alkanthiol-/Hydroxythiol-Monolagen mit definierter Oberflächenenergie zeigte, daß eine minimale Grenzflächenenergie (Monolayer/Wasser) existiert, unterhalb welcher die Fusion nicht mehr zu einer zusätzlichen Monolage, sondern lediglich zur Ausbildung von adsorbierten oder teilgespreiteten Vesikeln führt.Zur Charakterisierung der Membranen wurden Oberflächenplasmonenresonanz, Impedanzspektroskopie, zyklische Voltammetrie, elektrochemische reduktive Desorption, Rasterkraftmikroskopie und Kontaktwinkelmessungen herangezogen.In die Modellmembranen wurden Membranproteine (Porin, Annexin V, H+-ATPase) sowie ganze Membranfragmente (Bande 3 aus roten Blutzellen) rekonstituiert und mittels elektrochemischer Methoden auf ihre funktionelle Aktivität überprüft.
Resumo:
Auszug Im November 2006 stellten die Vereinten Nationen (UN) den jüngsten von einem unabhängigen Experten erstellten internationalen Bericht zu Gewalt an Kindern vor, wonach im Jahre 2002 weltweit schätzungsweise 53.000 Kinder durch Totschlag starben sowie 150 Mio. Mädchen und 73 Mio. Jungen unter 18 Jahren Opfer sexueller Misshandlungen wurden. In 31 von 200 Staaten sind körperliche Strafen von Auspeitschen bis Amputationen erlaubt und in knapp der Hälfte der Staaten ist die Körperstrafe an Schulen erlaubt (Pinheiro 2006). In Deutschland und Großbritannien sterben pro Woche zwei, in Frankreich drei, in Japan vier und in USA 27 Kinder an Misshandlung und Vernachlässigung. In einer vorangegangen Studie der UNICEF, dem Kinderhilfswerk der Vereinten Nationen, wurde festgestellt, dass in den reichen Ländern auf 100.000 Kinder jährlich zwischen 0, 1 und 3, 7 Kinder unter 15 Jahren als Folge von Misshandlung oder Vernachlässigung sterben (⊡ Abb. 48.1 ). Schätzungen gehen davon aus, dass auf einen Todesfall rund 150 Fälle von Kindesmisshandlung ohne Todesfolge kommen (UNICEF 2003).
Resumo:
Budding and vesiculation of erythrocyte membranes occurs by a process involving an uncoupling of the membrane skeleton from the lipid bilayer. Vesicle formation provides an important means whereby protein sorting and trafficking can occur. To understand the mechanism of sorting at the molecular level, we have developed a micropipette technique to quantify the redistribution of fluorescently labeled erythrocyte membrane components during mechanically induced membrane deformation and vesiculation. Our previous studies indicated that the spectrin-based membrane skeleton deforms elastically, producing a constant density gradient during deformation. Our current studies showed that during vesiculation the skeleton did not fragment but rather retracted to the cell body, resulting in a vesicle completely depleted of skeleton. These local changes in skeletal density regulated the sorting of nonskeletal membrane components. Highly mobile membrane components, phosphatidylethanolamine- and glycosylphosphatidylinositol-linked CD59 with no specific skeletal association were enriched in the vesicle. In contrast, two components with known specific skeletal association, band 3 and glycophorin A, were differentially depleted in vesicles. Increasing the skeletal association of glycophorin A by liganding its extrafacial domain reduced the fraction partitioning to the vesicle. We conclude that this technique of bilayer/skeleton uncoupling provides a means with which to study protein sorting driven by changes in local skeletal density. Moreover, it is the interaction of particular membrane components with the spectrin-based skeleton that determines molecular partitioning during protein sorting.