837 resultados para Ban Napo
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since the first underground nuclear explosion, carried out in 1958, the analysis of seismic signals generated by these sources has allowed seismologists to refine the travel times of seismic waves through the Earth and to verify the accuracy of the location algorithms (the ground truth for these sources was often known). Long international negotiates have been devoted to limit the proliferation and testing of nuclear weapons. In particular the Treaty for the comprehensive nuclear test ban (CTBT), was opened to signatures in 1996, though, even if it has been signed by 178 States, has not yet entered into force, The Treaty underlines the fundamental role of the seismological observations to verify its compliance, by detecting and locating seismic events, and identifying the nature of their sources. A precise definition of the hypocentral parameters represents the first step to discriminate whether a given seismic event is natural or not. In case that a specific event is retained suspicious by the majority of the State Parties, the Treaty contains provisions for conducting an on-site inspection (OSI) in the area surrounding the epicenter of the event, located through the International Monitoring System (IMS) of the CTBT Organization. An OSI is supposed to include the use of passive seismic techniques in the area of the suspected clandestine underground nuclear test. In fact, high quality seismological systems are thought to be capable to detect and locate very weak aftershocks triggered by underground nuclear explosions in the first days or weeks following the test. This PhD thesis deals with the development of two different seismic location techniques: the first one, known as the double difference joint hypocenter determination (DDJHD) technique, is aimed at locating closely spaced events at a global scale. The locations obtained by this method are characterized by a high relative accuracy, although the absolute location of the whole cluster remains uncertain. We eliminate this problem introducing a priori information: the known location of a selected event. The second technique concerns the reliable estimates of back azimuth and apparent velocity of seismic waves from local events of very low magnitude recorded by a trypartite array at a very local scale. For the two above-mentioned techniques, we have used the crosscorrelation technique among digital waveforms in order to minimize the errors linked with incorrect phase picking. The cross-correlation method relies on the similarity between waveforms of a pair of events at the same station, at the global scale, and on the similarity between waveforms of the same event at two different sensors of the try-partite array, at the local scale. After preliminary tests on the reliability of our location techniques based on simulations, we have applied both methodologies to real seismic events. The DDJHD technique has been applied to a seismic sequence occurred in the Turkey-Iran border region, using the data recorded by the IMS. At the beginning, the algorithm was applied to the differences among the original arrival times of the P phases, so the cross-correlation was not used. We have obtained that the relevant geometrical spreading, noticeable in the standard locations (namely the locations produced by the analysts of the International Data Center (IDC) of the CTBT Organization, assumed as our reference), has been considerably reduced by the application of our technique. This is what we expected, since the methodology has been applied to a sequence of events for which we can suppose a real closeness among the hypocenters, belonging to the same seismic structure. Our results point out the main advantage of this methodology: the systematic errors affecting the arrival times have been removed or at least reduced. The introduction of the cross-correlation has not brought evident improvements to our results: the two sets of locations (without and with the application of the cross-correlation technique) are very similar to each other. This can be commented saying that the use of the crosscorrelation has not substantially improved the precision of the manual pickings. Probably the pickings reported by the IDC are good enough to make the random picking error less important than the systematic error on travel times. As a further justification for the scarce quality of the results given by the cross-correlation, it should be remarked that the events included in our data set don’t have generally a good signal to noise ratio (SNR): the selected sequence is composed of weak events ( magnitude 4 or smaller) and the signals are strongly attenuated because of the large distance between the stations and the hypocentral area. In the local scale, in addition to the cross-correlation, we have performed a signal interpolation in order to improve the time resolution. The algorithm so developed has been applied to the data collected during an experiment carried out in Israel between 1998 and 1999. The results pointed out the following relevant conclusions: a) it is necessary to correlate waveform segments corresponding to the same seismic phases; b) it is not essential to select the exact first arrivals; and c) relevant information can be also obtained from the maximum amplitude wavelet of the waveforms (particularly in bad SNR conditions). Another remarkable point of our procedure is that its application doesn’t demand a long time to process the data, and therefore the user can immediately check the results. During a field survey, such feature will make possible a quasi real-time check allowing the immediate optimization of the array geometry, if so suggested by the results at an early stage.
Resumo:
El presente proyecto, enmarcado dentro del Programa INIAP/SENESCYT “Conservación y Uso Sostenible de Recursos Genéticos Forestales en áreas críticas de bosques húmedos y secos de los Andes y Amazonía”, a cargo del Departamento de Forestería del INIAP, nace de la necesidad de generar información sobre la pérdida de la biodiversidad de diversos ecosistemas de Ecuador. En concreto, de aquellos bosques de gran complejidad y elevada susceptibilidad como son los que se encuentran en la sub-cuenca del río Quijos: bosques húmedos de la región amazónica, fuentes de biodiversidad y sumideros de carbono, que se están viendo fuertemente amenazados por el cambio climático y por el cambio en el uso del suelo derivada de la intensa actividad humana que sufre la región desde hace décadas. Debido a esta complejidad, el proyecto se centra en las dos especies forestales más valoradas por los habitantes, aplicando metodología de Diagnóstico Rural Participativo, haciéndoles partícipes de esta forma de las decisiones y actuaciones de su región. Una vez determinadas las dos especies a estudiar (Cedrela montana y Erythrina edulis), se evaluó qué efectos tendrán las principales amenazas: el cambio climático y el cambio de uso del suelo, en las poblaciones de ambas. Para el estudio climático se han utilizado Modelos de Distribución de Especie, en concreto el programa Maxent, con el que se han modelizado dos situaciones: la probabilidad de idoneidad de hábitat actual y la probabilidad de idoneidad de hábitat futuro. Por comparación de ambos mapas se obtuvo una primera visión de cómo podría variar para el año 2070 la distribución potencial de ambas especies debido al cambio de las condiciones climáticas. Así mismo, se pudo determinar cuál de estas variables climáticas influye más en el modelo y, por lo tanto, en la distribución potencial. En el caso de Cedrela montana, en el año 2070 se prevé la desaparición total de hábitat idóneo en la zona de estudio, mientras que en Erythrina edulis, la reducción prevista es también casi total, de un 99,99%. A continuación, aplicando los Criterios de la Lista Roja de la UICN sobre los modelos, se ha determinado el estado de conservación de ambas especies, obteniendo el grado de amenaza que soportan, que en ambos casos es En Peligro Crítico (CR). Para el análisis del efecto del uso del suelo se procedió a la realización de muestreos en zonas con distinto grado antropogénico: el bosque natural y el bosque intervenido. Mediante comparación de las abundancias relativas y las distintas distribuciones diamétricas se han sacado conclusiones de cómo afecta la actividad humana a las poblaciones de ambas especies. Cedrela montana, por su excelente condición de maderable, desaparece en los bosques intervenidos y, si permanece, lo hace sólo con representación de diámetros bastante inferiores al de cortabilidad. Sin embargo, Erythrina edulis, por su condición de comestible, parece verse incluso beneficiada por la acción antrópica: desaparece con la eliminación del bosque, pero parece mantener o incrementar su abundancia en bosque intervenidos, en los que la curva de distribución diamétrica de la especie parece no variar con respecto al bosque primario. Con estas actividades se consigue comprender un poco más cómo sería la evolución de estas especies y el grado de amenaza a el que están sometidas, lo que constituye una fuente valiosa de información en la que basar futuras actividades de conservación de la biodiversidad y manejo sostenible del suelo.