924 resultados para Ball velocity
Resumo:
The primary objective of this study was to assess the lingual kinematic strategies used by younger and older adults to increase rate of speech. It was hypothesised that the strategies used by the older adults would differ from the young adults either as a direct result of, or in response to a need to compensate for, age-related changes in the tongue. Electromagnetic articulography was used to examine the tongue movements of eight young (M526.7 years) and eight older (M567.1 years) females during repetitions of /ta/ and /ka/ at a controlled moderate rate and then as fast as possible. The younger and older adults were found to significantly reduce consonant durations and increase syllable repetition rate by similar proportions. To achieve these reduced durations both groups appeared to use the same strategy, that of reducing the distances travelled by the tongue. Further comparisons at each rate, however, suggested a speed-accuracy trade-off and increased speech monitoring in the older adults. The results may assist in differentiating articulatory changes associated with normal aging from pathological changes found in disorders that affect the older population.
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.
Resumo:
When English-learning children begin using words the majority of their early utterances (around 80%) are nouns. Compared to nouns, there is a paucity of verbs or non-verb relational words, such as 'up' meaning 'pick me up'. The primary explanations to account for these differences in use either argue in support of a 'cognitive account', which claims that verbs entail more cognitive complexity than nouns, or they provide evidence challenging this account. In this paper I propose an additional explanation for children's noun/verb asymmetry. Presenting a 'multi-modal account' of word-learning based on children's gesture and word combinations, I show that at the one-word stage English-learning children use gestures to express verb-like elements which leaves their words free to express noun-like elements.
Resumo:
In high-velocity free-surface flows, air is continuously being trapped and released through the free-surface. Such high-velocity highly-aerated flows cannot be studied numerically because of the large number of relevant equations and parameters. Herein an advanced signal processing of traditional single- and dual-tip conductivity probes provides some new information on the air-water turbulent time and length scales. The technique is applied to turbulent open channel flows in a large-size facility. The auto- and cross-correlation analyses yield some characterisation of the large eddies advecting the bubbles. The transverse integral turbulent length and time scales are related to the step height: i.e., Lxy/h ~ 0.02 to 0.2, and T.sqrt(g/h) ~ 0.004 to 0.04. The results are irrespective of the Reynolds numbers. The present findings emphasise that turbulent dissipation by large-scale vortices is a significant process in the intermediate zone between the spray and bubbly flow regions (0.3 < C < 0.7). Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. The results are significant because they provide a picture general enough to be used to characterise the air-water flow field in prototype spillways.
Resumo:
In his study of the 'time of arrival' problem in the nonrelativistic quantum mechanics of a single particle, Allcock [1] noted that the direction of the probability flux vector is not necessarily the same as that of the mean momentum of a wave packet, even when the packet is composed entirely of plane waves with a common direction of momentum. Packets can be constructed, for example for a particle moving under a constant force, in which probability flows for a finite time in the opposite direction to the momentum. A similar phenomenon occurs for the Dirac electron. The maximum amount of probabilitiy backflow which can occur over a given time interval can be calculated in each case.
Resumo:
In experiments on isolated animal muscle, the force produced during active lengthening contractions can be up to twice the isometric force, whereas in human experiments lengthening force shows only modest, if any, increase in force. The presence of synergist and antagonist muscle activation associated with human experiments in situ may partly account for the difference between animal and human studies. Therefore, this study aimed to quantify the force-velocity relationship of the human soleus muscle and assess the likelihood that co-activation of antagonist muscles was responsible for the inhibition of torque during submaximal voluntary plantar flexor efforts. Seven subjects performed submaximal voluntary lengthening, shortening(at angular, velocities of +5, -5, +15, -15 and +30, and -30degrees s(-1)) and isometric plantar flexor efforts against an ankle torque motor. Angle-specific (90degrees) measures of plantar flexor torque plus surface and intramuscular electromyography from soleus, medial gastrocnemius and tibialis anterior were made. The level of activation (30% of maximal voluntary isometric effort) was maintained by providing direct visual feedback of the soleus electromyogram to the subject. In an attempt to isolate the contribution of soleus to the resultant plantar flexion torque, activation of the synergist and antagonist muscles were minimised by: (1) flexing the knee of the test limb, thereby minimising the activation of gastrocnemius, and (2) applying an anaesthetic block to the common peroneal nerve to eliminate activation of the primary antagonist muscle, tibialis anterior and the synergist muscles, peroneus longus and peroneus brevis. Plantar flexion torque decreased significantly (P<0.05) after blocking the common peroneal nerve which was likely due to abolishing activation of the peroneal muscles which are synergists for plantar flexion. When normalised to the corresponding isometric value, the force-velocity relationship between pre- and post-block conditions was not different. In both conditions, plantar flexion torques during shortening actions were significantly less than the isometric torque and decreased at faster velocities. During lengthening actions, however, plantar flexion torques were not significantly different from isometric regardless of angular velocity. It was concluded that the apparent inhibition of lengthening torques during voluntary activation is not due to co-activation of antagonist muscles. Results are presented as mean (SEM).
Resumo:
The present fundamental knowledge of fluid turbulence has been established primarily from hot- and cold-wire measurements. Unfortunately, however, these measurements necessarily suffer from contamination by noise since no certain method has previously been available to optimally filter noise from the measured signals. This limitation has impeded our progress of understanding turbulence profoundly. We address this limitation by presenting a simple, fast-convergent iterative scheme to digitally filter signals optimally and find Kolmogorov scales definitely. The great efficacy of the scheme is demonstrated by its application to the instantaneous velocity measured in a turbulent jet.
Resumo:
To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Arterial stiffness is an independent marker of cardiovascular events. Pulse wave velocity (PWV) is a validated method to detect arterial stiffness that can be influenced by several factors including age and blood pressure. However, it is not clear whether PWV could be influenced by circadian variations. In the present study, the authors measured blood pressure and carotid-femoral PWV measurements in 15 young healthy volunteers in 4 distinct periods: 8 am, noon, 4 pm, and 8 pm. No significant variations of systolic (P=.92), mean (P=.77), and diastolic (P=.66) blood pressure among 8 am (113 +/- 15, 84 +/- 8, 69 +/- 6 mm Hg), noon (114 +/- 13, 83 +/- 8, 68 +/- 6 mm Hg), 4 pm (114 +/- 13, 85 +/- 8, 70 +/- 7 mm Hg), and 8 pm (113 +/- 7, 83 +/- 10, 68 +/- 7 mm Hg), respectively, were observed. Similarly, carotid-femoral PWV did not change among the periods (8 am: 7.6 +/- 1.4 m/s, noon: 7.4 +/- 1.1 m/s, 4 pm: 7.6 +/- 1.0 m/s, 8 pm, 7.6 +/- 1.3 m/s; P=.85). Considering all measurements, mean blood pressure significantly correlated with PWV (r=.31; P=.016). In young healthy volunteers, there is no significant circadian variation of carotid-femoral PWV. These findings support the concept that it does not appear mandatory to perform PWV measurements at exactly the same period of the day. J Clin Hypertens (Greenwich). 2011;13:19-22. (c) 2010 Wiley Periodicals, Inc.
Resumo:
Background: The relation between left ventricular filing velocities determined by Doppler echocardiography and autonomic nervous system function assessed by heart rate variability (HRV) is unclear. The aim of this study was to evaluate the influence of the autonomic nervous system assessed by the time and frequency domain indices of HRV in the Doppler indices of left ventricular diastolic filling velocities in patients without heart disease. Methods: We studied 451 healthy individuals (255 female [56.4%]) with normal blood pressure, electrocardiogram, chest x-ray, and treadmill electrocardiographic exercise stress test results, with a mean age of 43 +/- 12 (range 15-82) years, who underwent transthoracic Doppler echocardiography and 24-hour electrocardiographic ambulatory monitoring. We studied indices of HRV on time (standard deviation [SD] of all normal sinus RR intervals during 24 hours, SD of averaged normal sinus RR intervals for all 5-minute segments, mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms) and frequency (low frequency, high frequency, very low frequency, low frequency/high frequency ratio) domains relative to peak flow velocity during rapid passive filling phase (E), atrial contraction (A), E/A ratio, E-wave deceleration time, and isovolumic relaxation time. Statistical analysis was performed with Pearson correlation and logistic regression. Results: Peak flow velocity during rapid passive filling phase (E) and atrial contraction (A), E/A ratio, and deceleration time of early mitral inflow did not demonstrate a significant correlation with indices of HRV in time and frequency domain. We found that the E/A ratio was < 1 in 45 individuals (10%). Individuals with an E/A ratio < 1 had lower indices of HRV in frequency domain (except low frequency/high frequency) and lower indices of the mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms in time domain. Logistic regression demonstrated that an E/A ratio < 1 was associated with lower HF. Conclusion: Individuals with no evidence of heart disease and an E/A ratio < 1 demonstrated a significant decrease in indexes of HRV associated with parasympathetic modulation. (J Am Soc Echocardiogr 2010;23: 762-5.)
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop. Specific alpha absolute power changes were measured in quantitative electroencephalography (qEEG). Our hypothesis is that during the preparation of motoraction (i.e.. 2 s before the ball drops) integration occurs among the left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. We contend that in right-handers, the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy right handed subjects (13 men and 10 women), with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness. The experiment consisted of a task of catching balls with the right hard in free drop. The three-way ANOVA analysis demonstrated all interaction between moment and position in left-medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.05). Summarizing, the experimental task enabled the observation of integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG) alpha absolute power changes. Our hypothesis is that during the preparation of motor action (i.e., 2 s before ball`s drop) occurred integration among left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. This hypothesis supports a lateralization of motor function. Although we contend that in right-handers the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy subjects (13 male and 10 female), right handed, with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness, right handed, and do not make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position in left medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.001). Summarizing, through experimental task employed, it was possible to observe integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation. In this way, it established an absolute predominance of this mechanism under the left hemisphere. (C) 2008 Elsevier Ireland Ltd. All rights reserved.