179 resultados para Bacteroides-asaccharolyticus
Resumo:
Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health. Individuals and organizations with management responsibilities need to understand the risks to ecosystems and to humans from contact with contamination. Managers also need to understand how key contaminants vary over time and space in order to design and prioritize mitigation strategies. Tumacacori National Historic Park (NHP) is responsible for management of its water resources for the benefit of the park and for the health of its visitors. The existence of microbial contaminants in the park poses risks that must be considered in park planning and operations. The water quality laboratory at the Maricopa Agricultural Center (in collaboration with stakeholder groups and individuals located in the ADEQ-targeted watersheds) identified biological changes in surface water quality in impaired reaches rivers to determine the sources of Escherichia coli (E. coli); bacteria utilizing innovative water quality microbial/bacterial source tracking methods. The end goal was to support targeted watershed groups and ADEQ towards E. coli reductions. In the field monitoring was conducted by the selected targeted watershed groups in conjunction with The University of Arizona Maricopa Agricultural Center Water Quality Laboratory. This consisted of collecting samples for Bacteroides testing from multiple locations on select impaired reaches, to determine contamination resulting from cattle, human recreation, and other contributions. Such testing was performed in conjunction with high flow and base flow conditions in order to accurately portray water quality conditions and variations. Microbial monitoring was conducted by The University of Arizona Water Quality Laboratory at the Maricopa Agricultural Center using genetic typing to differentiate among two categories of Bacteroides: human and all (total). Testing used microbial detection methodologies and molecular source tracking techniques.^
Resumo:
Strains of Bacteroides fragilis associated with diarrheal disease (enterotoxigenic B. fragilis) produce a 20-kDa zinc-dependent metalloprotease toxin (B. fragilis enterotoxin; BFT) that reversibly stimulates chloride secretion and alters tight junctional function in polarized intestinal epithelial cells. BFT alters cellular morphology and physiology most potently and rapidly when placed on the basolateral membrane of epithelial cells, suggesting that the cellular substrate for BFT may be present on this membrane. Herein, we demonstrate that BFT specifically cleaves within 1 min the extracellular domain of the zonula adherens protein, E-cadherin. Cleavage of E-cadherin by BFT is ATP-independent and essential to the morphologic and physiologic activity of BFT. However, the morphologic changes occurring in response to BFT are dependent on target-cell ATP. E-cadherin is shown here to be a cellular substrate for a bacterial toxin and represents the identification of a mechanism of action, cell-surface proteolytic activity, for a bacterial toxin.
Resumo:
Six pimarane-type diterpenes isolated from Viguiera arenaria Baker and two semi-synthetic derivatives were evaluated in vitro against a panel of representative microorganisms responsible for dental root canal infections. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Porphyromonas gingivalis, Prevotella nigrescens, Prevotella intermedia, Prevotella buccae, Fusobacterium nucleatum, Bacteroides fragilis, Actinomyces naeslundii, Actinomyces viscosus, Peptostreptococcus micros, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans. The compounds ent-pimara-8(14), 15-dien-19-oic acid, its sodium salt and ent-8(14), 15-pimaradien-3 beta-ol were the most active, displaying MIC values ranging from 1 to 10 mu g mL(-1). The results also allow us to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to the discovery of new chemicals for use as a complement to instrumental endodontic procedures.
Resumo:
Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1) of LAS, kept at 30 +/- 2 degrees C and operated with a hydraulic retention time (HRT) of 12 h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 ring l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorgan isms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Porphyromonas gingivalis and Tannerella forsythia are anaerobic bacteria commonly involved in root canal infections. Although previous investigations have assessed these species by strictly qualitative approaches, accurate determination of their cell levels by a sensitive quantitative technique may contribute with additional information regarding relevance in pain of endodontic origin. Method: The root canal levels of P gingivalis, T forsythia, and total bacteria were investigated by a quantitative polymerase chain reaction (PCR) assay based on unique copy molecular markers. A total of 32 symptomatic (n = 14) and asymptomatic (n = 18) cases of endodontic infections were analyzed. Root canal samples were collected; genomic DNA was extracted and submitted to SYBR Green I real-time PCR targeting the rgpB (P gingivalis), bspA (T forsythia), and rpoB (total bacteria) single copy genes. Results: Overall, R gingivalis, T forsythia, and the coexistence of both species were encountered in 28%, 66%, and 22% of the subjects, respectively. P gingivalis and T forsythia levels ranged from 5.65 x 10(-6) to 1.20 x 10(-2) and from 5.76 x 10(-6) to 1.35 x 10(-1). T forsythia was highly prevalent and numerous in the study groups, whereas P gingivalis was moderately frequent and less abundant, displaying 19-fold lower average levels than the former. Conclusions: The endodontic levels of P gingivalis and T forsythia, individually or in conjunction, did not display significant associations with the manifestation of pain of endodontic origin. (J Endod 2009,35:1518-1524)
Resumo:
Although Porphyromonas gingivalis is a defined pathogen in periodontal disease, many subjects control the infection without experiencing loss of attachment. Differences in host susceptibility to the disease may be reflected in the pattern of humoral antibodies against specific P. gingivalis antigens. The aim of this study was to determine the presence of antibodies against immunodominant P. gingivalis antigens as well as the isotype and subclass of anti-P. gingivalis antibodies against outer membrane antigens in four groups of patients: P. gingivalis-positive, 1) with and 2) without periodontitis, and P. gingivalis-negative, 3) with and 4) without periodontitis. Antigens of molecular weight 92, 63, and 32 kDa and lipopolysaccharide were found to be immunodominant. Group 1 subjects showed a significantly higher response to the 92 and 63 kDa antigens compared with other groups. The response to lipopolysaccharide was significantly higher in group 1, and lower in group 4 than in groups 2, 3. Immunoglobulin G(1) (IgG(1)), IgG(2) and IgM antibodies against P. gingivalis outer membrane were present in all subjects, while only some subjects were seropositive for IgG(3), IgG(4) and IgA. There were no differences in concentrations for IgG(1), IgG(3) and IgM. The IgG(2) concentration in group 4 was significantly higher than in groups 1 and 2, while the IgG(4) concentration in group 4 was significantly lower than in other groups. The frequency of seropositivity for IgG(4) and IgA was lowest in group 4, while IgG; seropositivity was almost exclusively seen in healthy patients iii groups 2, 4. These findings suggest that the presence of IgG(3) may reflect non-susceptibility to the disease, while lack of IgG(4) may be indicative of periodontal health and lack of infection.
Resumo:
The phylogenetic relationships among the species of Caulobacter, Asticcacaulis and Brevundimonas were studied by comparison of their 16S rDNA sequences. The analysis of almost complete sequences confirmed the early evolutionary divergence of the freshwater and marine species of Caulobacter reported previously [Stahl, D. A., Key, R,, Flesher, B, & Smit, J. (1992), J Bacteriol 174, 2193-2198]. The freshwater species formed two distinct clusters. One cluster contained the species Caulobacter bacteroides, Caulobacter crescentus, Caulobacter fusiformis and Caulobacter henricii. C, bacteroides and C, fusiformis are very closely related (sequence identity 99.8%). The second cluster was not exclusive and contained the species Caulobacter intermedius, Caulobacter subvibrioides and Caulobacter variabilis, as well as Brevundimonas diminuta and Brevundimonas vesicularis, The marine species Caulobacter halobacteroides and Caulobacter maris were very closely related, with a sequence identity of 99.7%, These two species were most closely but distantly related to the marine hyphal/budding bacteria Hyphomonas jannaschiana and Hirschia baltica, which formed a deep phylogenetic line with Rhodobacter sphaeroides and Rhodobacter capsulatus, Caulobacter leidyia is unrelated to the other species of Caulobacter and belongs to the alpha-4 subclass of the Proteobacteria, forming a distinct cluster with Asticcacaulis excentricus and Asticcacaulis biprosthecium, The taxonomic implications of the polyphyletic nature of the genus Caulobacter and the absence of a type culture for the type species of the genus, Caulobacter vibrioides, are discussed.
Resumo:
Determination of the 16S rRNA gene sequence of Caulobacter subvibrioides ATCC 15264(T) (T = type strain) confirmed that this species is a member of the alpha subclass of the Proteobacteria and showed that it is phylogenetically most closely related to the Caulobacter group comprising the species Caulobacter bacteroides, Caulobacter crescentus, and Brevandimonas (Pseudomonas) diminuta, for which 16S rRNA sequences of the type strains are currently available. The closest known relative of strain ATCC 15264(T) among these species is B. diminuta (level of direct pairwise sequence similarity, 95%). On the basis of its previously determined 16S rRNA sequence (accession number M83797), C. subvibrioides is most closely related to Sphingomonas adhaesiva in the alpha-4 subgroup (level of similarity, 97.7%). Analysis of the hydroxy fatty acids of C. subvibrioides ATCC 15264(T) showed that the 2-hydroxymyristic acid which is characteristic of the genus Sphingomonas was absent.
Resumo:
PURPOSE: This study was designed to identify the mucosa-associated microflora in patients with severe ulcerative colitis before and after restorative proctocolectomy with ileoanal pouch construction in comparison with historic controls. METHODS: Ten patients with a diagnosis of ulcerative colitis were evaluated. Mucus was collected during colonoscopy from all segments of the colon and terminal ileum before surgery, and from the ileal pouch two and eight months after ileostomy closure. The prevalence and mean concentration of the mucosa-associated microflora were compared over time and with historic controls. RESULTS: Veillonella sp was the most prevalent bacterium in patients and controls. Klebsiella sp was significantly more prevalent in the ileum of controls, was not found in patients with ulcerative colitis, and after proctocolectomy returned to values found in controls. Some bacteria such as Enterobacter sp, Staphylococcus sp (coag-), Bacteroides sp (npg), Lactobacillus sp, and Veillonella sp had higher mean concentrations in the ileal pouch of patients after surgery than in controls. CONCLUSION: No bacterium was identified that could be exclusively responsible for the maintenance of the inflammatory process. The mucosa-associated microflora of patients with ulcerative colitis underwent significant changes after proctocolectomy with ileal pouch construction and returned to almost normal values for some bacteria.