937 resultados para Bacterial Adhesion


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During a 6-year period, we isolated three Abiotrophia defectiva, six Granulicatella adiacens and two G. 'para-adiacens' strains from clinical specimens. All A. defectiva strains were isolated from immunocompetent patients with endovascular infections, whereas the Granulicatella spp. strains were isolated from immunosuppressed patients with primary bacteremia. As the capacity of bacteria to adhere to the host extracellular matrix (ECM) has been implicated in the pathogenesis of endovascular infection, we investigated the ability of A. defectiva and Granulicatella spp. isolates to bind different ECM components immobilized in microtiter plates. Adherence tests showed a strong attachment of A. defectiva strains to fibronectin, whereas Granulicatella spp. strains were not adherent. The poor adherence of Granulicatella spp. strains to the ECM could be correlated with a lower propensity to induce endocarditis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since Staphylococcus aureus expresses multiple pathogenic factors, studying their individual roles in single-gene-knockout mutants is difficult. To circumvent this problem, S. aureus clumping factor A (clfA) and fibronectin-binding protein A (fnbA) genes were constitutively expressed in poorly pathogenic Lactococcus lactis using the recently described pOri23 vector. The recombinant organisms were tested in vitro for their adherence to immobilized fibrinogen and fibronectin and in vivo for their ability to infect rats with catheter-induced aortic vegetations. In vitro, both clfA and fnbA increased the adherence of lactococci to their specific ligands to a similar extent as the S. aureus gene donor. In vivo, the minimum inoculum size producing endocarditis in > or =80% of the rats (80% infective dose [ID80]) with the parent lactococcus was > or =10(7) CFU. In contrast, clfA-expressing and fnbA-expressing lactococci required only 10(5) CFU to infect the majority of the animals (P < 0.00005). This was comparable to the infectivities of classical endocarditis pathogens such as S. aureus and streptococci (ID80 = 10(4) to 10(5) CFU) in this model. The results confirmed the role of clfA in endovascular infection, but with a much higher degree of confidence than with single-gene-inactivated staphylococci. Moreover, they identified fnbA as a critical virulence factor of equivalent importance. This was in contrast to previous studies that produced controversial results regarding this very determinant. Taken together, the present observations suggest that if antiadhesin therapy were to be developed, at least both of the clfA and fnbA products should be blocked for the therapy to be effective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MsrR, a factor contributing to methicillin resistance in Staphylococcus aureus, belongs to the LytR-CpsA-Psr family of cell envelope-associated proteins. Deletion of msrR increased cell size and aggregation, and altered envelope properties, leading to a temporary reduction in cell surface hydrophobicity, diminished colony-spreading ability, and an increased susceptibility to Congo red. The reduced phosphorus content of purified cell walls of the msrR mutant suggested a reduction in wall teichoic acids, which may explain some of the observed phenotypes. Microarray analysis of the msrR deletion mutant revealed only minor changes in the global transcriptome, suggesting that MsrR has structural rather than regulatory functions. Importantly, virulence of the msrR mutant was decreased in a nematode-killing assay as well as in rat experimental endocarditis. MsrR is therefore likely to play a role in cell envelope maintenance, cell separation, and pathogenicity of S. aureus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli adapts its lifestyle to the variations of environmental growth conditions, swapping between swimming motility or biofilm formation. The stationary-phase sigma factor RpoS is an important regulator of this switch, since it stimulates adhesion and represses flagellar biosynthesis. By measuring the dynamics of gene expression, we show that RpoS inhibits the transcription of the flagellar sigma factor, FliA, in exponential growth phase. RpoS also partially controls the expression of CsgD and CpxR, two transcription factors important for bacterial adhesion. We demonstrate that these two regulators repress the transcription of fliA, flgM, and tar and that this regulation is dependent on the growth medium. CsgD binds to the flgM and fliA promoters around their -10 promoter element, strongly suggesting direct repression. We show that CsgD and CpxR also affect the expression of other known modulators of cell motility. We propose an updated structure of the regulatory network controlling the choice between adhesion and motility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virulence in the opportunistic human pathogen Pseudomonas aeruginosa is controlled by cell density via diffusible signalling molecules ('autoinducers') of the N-acylhomoserine lactone (AHL) type. Two Bacillus sp. isolates (A23 and A24) with AHL-degrading activity were identified among a large collection of rhizosphere bacteria. From isolate A24 a gene was cloned which was similar to the aiiA gene, encoding an AHL lactonase in another Bacillus strain. Expression of the aiiA homologue from isolate A24 in P. aeruginosa PAO1 reduced the amount of the quorum sensing signal N-oxododecanoyl-L-homoserine lactone and completely prevented the accumulation of the second AHL signal, N-butyryl-L-homoserine lactone. This strongly reduced AHL content correlated with a markedly decreased expression and production of several virulence factors and cytotoxic compounds such as elastase, rhamnolipids, hydrogen cyanide and pyocyanin, and strongly reduced swarming. However, no effect was observed on flagellar swimming or on twitching motility, and aiiA expression did not affect bacterial adhesion to a polyvinylchloride surface. In conclusion, introduction of an AHL degradation gene into P. aeruginosa could block cell-cell communication and exoproduct formation, but failed to interfere with surface colonization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adherence to fibrinogen and fibronectin plays a crucial role in Staphylococcus aureus experimental endocarditis. Previous genetic studies have shown that infection and carriage isolates do not systematically differ in their virulence-related genes, including genes conferring adherence, such as clfA and fnbA. We set out to determine the range of adherence phenotypes in carriage isolates of S. aureus, to compare the adherence of these isolates to the adherence of infection isolates, and to determine the relationship between adherence and infectivity in a rat model of experimental endocarditis. A total of 133 healthy carriage isolates were screened for in vitro adherence to fibrinogen and fibronectin, and 30 isolates were randomly chosen for further investigation. These 30 isolates were compared to 30 infective endocarditis isolates and 30 blood culture isolates. The infectivities of the carriage isolates, which displayed either extremely low or high adherence to fibrinogen and fibronectin, were tested using a rat model of experimental endocarditis. The levels of adherence to both fibrinogen and fibronectin were very similar for isolates from healthy carriers and members of the two groups of infection isolates. All three groups of isolates showed a wide range of adherence to fibrinogen and fibronectin. Moreover, the carriage isolates that showed minimal adherence and the carriage isolates that showed strong adherence had the same infectivity in experimental endocarditis. Adherence was proven to be important for pathogenesis in experimental endocarditis, but even the least adherent carriage strains had the ability to induce infection. We discuss the roles of differential gene expression, human host factors, and gene redundancy in resolving this apparent paradox.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface molecules of Staphylococcus aureus are involved in the colonization of vascular endothelium which is a crucial primary event in the pathogenesis of infective endocarditis (IE). The ability of these molecules to also launch endothelial procoagulant and proinflammatory responses, which characterize IE, is not known. In the present study we investigated the individual capacities of three prominent S. aureus surface molecules; fibronectin-binding protein A (FnBPA) and B (FnBPB) and clumping factor A (ClfA), to promote bacterial adherence to cultured human endothelial cells (ECs) and to activate phenotypic and functional changes in these ECs. Non-invasive surrogate bacterium Lactococcus lactis, which, by gene transfer, expressed staphylococcal FnBPA, FnBPB or ClfA molecules were used. Infection of ECs increased 50- to 100-fold with FnBPA- or FnBPB-positive recombinant lactococci. This coincided with EC activation, interleukin-8 secretion and surface expression of ICAM-1 and VCAM-1 and concomitant monocyte adhesion. Infection with ClfA-positive lactococci did not activate EC. FnBPA-positive L. lactis also induced a prominent tissue factor-dependent endothelial coagulation response that was intensified by cell-bound monocytes. Thus S. aureus FnBPs, but not ClfA, confer invasiveness and pathogenicity to non-pathogenic L. lactis organisms indicating that bacterium-EC interactions mediated by these adhesins are sufficient to evoke inflammation as well as procoagulant activity at infected endovascular sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple consequences that remain poorly understood at the molecular level. Deciphering such events can provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the mucosal immune system include maturation prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. Using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we found that association of a Lactobacillus or a Bifidobacterium with nonspecific secretory IgA (SIgA) enhanced probiotic adhesion by a factor of 3.4-fold or more. Bacteria alone or in complex with SIgA reinforced transepithelial electrical resistance, a phenomenon coupled with increased phosphorylation of tight junction proteins zonula occludens-1 and occludin. In contrast, association with SIgA resulted in both enhanced level of nuclear translocation of NF-κB and production of epithelial polymeric Ig receptor as compared with bacteria alone. Moreover, thymic stromal lymphopoietin production was increased upon exposure to bacteria and further enhanced with SIgA-based complexes, whereas the level of pro-inflammatory epithelial cell mediators remained unaffected. Interestingly, SIgA-mediated potentiation of the Caco-2 cell responsiveness to the two probiotics tested involved Fab-independent interaction with the bacteria. These findings add to the multiple functions of SIgA and underscore a novel role of the antibody in interaction with intestinal bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of Staphylococcus aureus adhesins in Lactococcus lactis identified clumping factor A (ClfA) and fibronectin-binding protein A (FnBPA) as critical for valve colonization in rats with experimental endocarditis. This study further analyzed their role in disease evolution. Infected animals were followed for 3 d. ClfA-positive lactococci successfully colonized damaged valves, but were spontaneously eradicated over 48 h. In contrast, FnBPA-positive lactococci progressively increased bacterial titers in vegetations and spleens. At imaging, ClfA-positive lactococci were restricted to the vegetations, whereas FnBPA-positive lactococci also invaded the adjacent endothelium. This reflected the capacity of FnBPA to trigger cell internalization in vitro. Because FnBPA carries both fibrinogen- and fibronectin-binding domains, we tested the role of these functionalities by deleting the fibrinogen-binding domain of FnBPA and supplementing it with the fibrinogen-binding domain of ClfA in cis or in trans. Deletion of the fibrinogen-binding domain of FnBPA did not alter fibronectin binding and cell internalization in vitro. However, it totally abrogated valve infectivity in vivo. This ability was restored in cis by inserting the fibrinogen-binding domain of ClfA into truncated FnBPA, and in trans by coexpressing full-length ClfA and truncated FnBPA on two separate plasmids. Thus, fibrinogen and fibronectin binding could cooperate for S. aureus valve colonization and endothelial invasion in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to induce experimental endocarditis of biofilm-deficient mutants of Streptococcus gordonii was studied in an isogenic background. Strains were inactivated in either comD, fruK or pbp2b genes, which are involved in biofilm formation. These strains were clearly impaired (>75% reduction) in biofilm production in vitro. However, this did not result in a decreased severity of infection in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rats with periodontitis and catheter-induced aortic valve vegetations underwent dental extractions. Cultures of blood obtained 1 min later showed polymicrobial bacteremia in 19 of 19 rats, mostly due to viridans streptococci (18 of 19), Morganella (15 of 19), group G streptococci (13 of 19), and Staphylococcus aureus (10 of 19). Viridans streptococci circulated in higher numbers than did group G streptococci and S. aureus (P less than .01). Three days after dental extractions, 18 of 20 rats had endocarditis. Fifteen (83%) of 18 infections were due to group G streptococci, 9 (50%) of 18 were due to S. aureus, and 2 (11%) of 18 were due to viridans streptococci (P less than .05). In vitro, adherence to platelet-fibrin matrices of endocarditis strain 8 of group G streptococcus was two times greater than that of endocarditis strain S. aureus 23 and three to four times greater than that of Streptococcus sanguis 44 and Morganella morganii 93 (P less than 10(-5)). The inoculum size that produced endocarditis in 90% of rats after iv challenge was 10(5) cfu for group G streptococcus strain 8 and 10(7) for S. sanguis 44.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUME DESTINE A UN LARGE PUBLICL'intestin est le siège d'intenses agressions de la part de l'ensemble des aliments ingérés, de bactéries agressives dites pathogènes mais également de bactéries dites commensales peuplant naturellement les surfaces intestinales muqueuses. Pour faire face, notre organisme arbore de nombreux niveaux de protections tant physiques, chimiques, mécaniques mais aussi immunitaires. La présence d'un type particulier de cellules, les cellules épithéliales (IEC) assurant une protection physique, ainsi que la production d'anticorps spécialisés par le système immunitaire appelés immunoglobulines sécrétoires A (SlgA) servent conjointement de première ligne de défense contre ces agressions externes. Néanmoins, comment le dialogue s'articule entre ces deux partenaires reste incomplet.Nous avons donc décidé de mimer ces interactions en modélisant les surfaces muqueuses par une monocouche de cellules différenciées en laboratoire. Des souches bactériennes isolées de l'intestin humain seules ou associées à des SlgA non-spécifiques ont été mises au contact de ce modèle cellulaire nous permettant de conclure quant à la présence effective d'une modulation du dialogue bactérie/lEC impliquant une activation de la réponse cellulaire vers un état de tolérance mutuelle. De façon surprenante, nous avons par ailleurs mis en évidence un type d'interaction nouveau entre ces anticorps et ces bactéries. Une étude biochimique nous a permis de détailler un nouveau rôle des SlgA médié par les sucres présents à leur surface dans le maintien d'une relation pacifique avec les commensaux perpétuellement présents, relations qualifiées d'homésostase intestinale.Le rôle protecteur des SlgA a par ailleurs été abordé pour avoir une meilleure appréhension de leur impact au niveau cellulaire lors d'infection par Shigella flexneri, bactérie causant la Shigellose, diarrhée sanglante responsable de la mort de plus d'un million de personnes chaque année. Basée sur le même modèle cellulaire, cette étude nous a permis de démontrer une nouvelle entrée de ce pathogène directement via les IEC. La présence d'anticorps spécifiques à la surface des bactéries restreint leur champs d'action contre les cibles intracellulaires identifiées que sont les filaments soutenant le squelette de la cellule, les fibres d'actine ainsi que les jonctions serrées, réseaux de protéines clés des interactions entre cellules. Cette ouverture au niveau cellulaire apporte un nouvel élan quant à la compréhension du rôle protecteur des SlgA lors d'attaques de l'intestin, protection semblant dépendante d'une agrégation des bactéries.Pour finir, nous avons mis en évidence la détection directe par les cellules de la présence d'anticorps libres dans l'intestin ajoutant une nouvelle réplique dans le dialogue complexe entre ces deux piliers de l'équilibre intestinal que sont les SlgA et les cellules épithéliales.RESUMELa muqueuse intestinale est dotée d'un réseau complexe de protections physico-chimiques, mécaniques ou immunologiques. Associées à un système immunitaire omniprésent, les cellules épithéliales intestinales {IEC) bordant la lumière intestinale ont la double tâche de protéger l'intérieur de l'organisme stérile contre l'invasion et la dissémination d'agents pathogènes, et de maintenir une relation pacifique avec la flore intestinale, rôles également joués par les immunoglobulines sécrétoires A (SlgA), anticorps les plus abondamment présents à la surface des muqueuses. Tant les IEC que les SlgA sont ainsi décrites comme convergeant vers le même objectif ; néanmoins, les rouages de leurs interactions restent largement inconnus.Pour répondre à cette question, des monocouches épithéliales reconstituées in vitro ont été incubées avec des souches commensales telles que des Lactobacillus ou des Bifodobacteria, seules ou complexées avec des SlgA non-spécifiques, nous permettant de décrypter l'influence des SlgA sur la détection des bactéries par les IEC, favorisant l'adhésion bactérienne et la cohésion cellulaire, augmentant l'activation de la voie NF-κΒ ainsi que la sécrétion de la cytokine thymic stromal lymphopoietin contrairement à celle de médiateurs pro-inflammatoires qui reste inchangée. Par ailleurs, une interaction Fab-indépendante est suggérée dans l'interaction SlgA/bactéries. Comme une interaction de faible affinité a été décrite comme prenant naturellement place au niveau de l'intestin, nous avons donc disséqué les mécanismes sous- jacents en utilisant un large spectre de bactérie associés à des protéines soit recombinantes soit isolées à partir de colostrum, mettant en évidence un rôle crucial des N-glycanes présents sur la pièce sécrétoire et soulignant une nouvelle propriété des SlgA dans l'homéostase intestinale.Intrinsèquement liés aux caractéristiques des SlgA, nous nous sommes également focalisés sur leur rôle protecteur lors d'infection par l'enteropathogène Shigella flexneri reproduites in vitro sur des monocouches polarisées. Nous avons tout d'abord démontré une nouvelle porte d'entrée pour ce pathogène directement via les IEC. L'agrégation des bactéries par les SlgA confère aux cellules une meilleure résistance à l'infection, retardant croissance bactérienne et entrée cellulaire, affectant par ailleurs leur capacité à cibler le cytosquelette et les jonctions serrées. La formation de tels cargos détectés de façon biaisée par les IEC apparaît comme une explication plausible au maintien de la cohésion cellulaire médiée par les SlgA.Enfin, le retrotransport des SlgA à travers les IEC a été abordé soulignant une participation active de ces cellules dans la détection de l'environnement extérieur, les impliquant possiblement dans l'activation d'un état muqueux stable.Conjointement, ces résultats indiquent que les SlgA représentent l'un des éléments-clés à la surface de la muqueuse et soulignent la complexité du dialogue établi avec l'épithélium en vue du maintien d'un fragile équilibre intestinal.ABSTRACTThe intestinal mucosa is endowed with a complex protective network melting physiochemical, mechanical and immunological features. Beyond the ubiquitous intestinal immune system, intestinal epithelial cells (IEC) lying the mucosal surfaces have also the dual task to protect the sterile core against invasion and dissemination of pathogens, and maintain a peaceful relationship with commensal microorganisms, aims also achieved by the presence of high amounts of secretory immunoglobulins A (SlgA), the most abundant immunoglobulin present at mucosal surfaces. Both IEC and SlgA are thus described to converge toward the same goal but how their interplay is orchestrated is largely unknown.To address this question, in vitro reconstituted IEC monolayers were first apically incubated with commensal bacteria such as Lactobacillus or Bifodobacteria strains either alone or in complexes with non-specific SlgA. Favoring the bacterial adhesion and cellular cohesion, SlgA impacts on the cellular sensing of bacteria, increasing NF-κΒ activation, and leading to cytokine releases restricted to the thymic stromal lymphopoietin and unaffected expression of pro-inflammatory mediators. Of main interest, bacterial recognition by SlgA suggested a Fab-independent interaction. As this low affinity, called natural coating occurs in the intestine, we further dissected the underlying mechanisms using a larger spectrum of commensal strains associated with recombinant as well as colostrum-derived proteins and pinpointed a crucial role of N-glycans of the secretory component, emphasizing an underestimated role of carbohydrates and another properties of SlgA in mediating intestinal homeostasis.As mucosal protection is also anchored in SlgA and IEC features, we focused on the cellular role of SlgA. Using IEC apical infection by the enteropathogen Shigella flexneri, we have first demonstrated a new gate of entry for this pathogen directly via IEC. Specific SlgA bacterial aggregation conferred to the cells a better resistance to infection, delaying bacterial growth and cellular entry, affecting their ability to damage both the cytoskeleton and the tight junctions. Formation of such big cargos differentially detected by IEC appears as a plausible explanation sustaining at the cellular level the antibody-mediated mucosal protection.Finally, SlgA retrotransport across IEC has been tackled stressing an active IEC sensing of the external environment possibly involved in the steady-state mucosal activation.All together, these results indicate that SlgA represents one of the pivotal elements at mucosal surfaces highlighting the complexity of the dialogue established with the epithelium sustaining the fragile intestinal balance.The Intestinal mucosa is endowed with a complex protective network melting physiochemical, mechanical and immunological features. Beyond the ubiquitous intestinal immune system, intestinal epithelial cells (IEC) lying the mucosal surfaces have also the dual task to protect the sterile core against invasion and dissemination of pathogens, and maintain a peaceful relationship with commensal microorganisms, aims also achieved by the presence of high amounts of secretory immunoglobulins A (SlgA), the most abundant immunoglobulin present at mucosal surfaces. Both IEC and SlgA are thus described to converge toward the same goal but how their interplay is orchestrated is largely unknown.To address this question, in vitro reconstituted IEC monolayers were first apically incubated with commensal bacteria such as Lactobacillus or Bifodobacteria strains either alone or in complexes with non-specific SlgA. Favoring the bacterial adhesion and cellular cohesion, SlgA impacts on the cellular sensing of bacteria, increasing NF-κΒ activation, and leading to cytokine releases restricted to the thymic stromal lymphopoietin and unaffected expression of pro-inflammatory mediators. Of main interest, bacterial recognition by SlgA suggested a Fab-independent interaction. As this low affinity, called natural coating occurs in the intestine, we further dissected the underlying mechanisms using a larger spectrum of commensal strains associated with recombinant as well as colostrum-derived proteins and pinpointed a crucial role of N-glycans of the secretory component, emphasizing an underestimated role of carbohydrates and another properties of SlgA in mediating intestinal homeostasis.As mucosal protection is also anchored in SlgA and IEC features, we focused on the cellular role of SlgA. Using IEC apical infection by the enteropathogen Shigella flexneri, we have first demonstrated a new gate of entry for this pathogen directly via IEC. Specific SlgA bacterial aggregation conferred to the cells a better resistance to infection, delaying bacterial growth and cellular entry, affecting their ability to damage both the cytoskeleton and the tight junctions. Formation of such big cargos differentially detected by IEC appears as a plausible explanation sustaining at the cellular level the antibody-mediated mucosal protection.Finally, SlgA retrotransport across IEC has been tackled stressing an active IEC sensing of the external environment possibly involved in the steady-state mucosal activation.All together, these results indicate that SlgA represents one of the pivotal elements at mucosal surfaces highlighting the complexity of the dialogue established with the epithelium sustaining the fragile intestinal balance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathogenic role of staphylococcal coagulase and clumping factor was investigated in the rat model of endocarditis. The coagulase-producing and clumping factor-producing parent strain Staphylococcus aureus Newman and a series of mutants defective in either coagulase, clumping factor, or both were tested for their ability (i) to attach in vitro to either rat fibrinogen or platelet-fibrin clots and (ii) to produce endocarditis in rats with catheter-induced aortic vegetations. In vitro, the clumping factor-defective mutants were up to 100 times less able than the wild type strain to attach to fibrinogen and also significantly less adherent than the parents to platelet-fibrin clots. Coagulase-defective mutants, in contrast, were not altered in their in vitro adherence phenotype. The rate of in vivo infection was inoculum dependent. Clumping factor-defective mutants produced ca. 50% less endocarditis than the parent organisms when injected at inoculum sizes infecting, respectively, 40 and 80% (ID40 and ID80, respectively) of rats with the wild-type strain. This was a trend at the ID40 but was statistically significant at the ID80 (P &lt; 0.05). Coagulase-defective bacteria were not affected in their infectivity. Complementation of a clumping factor-defective mutant with a copy of the wild-type clumping factor gene restored both its in vitro adherence and its in vivo infectivity. These results show that clumping factor plays a specific role in the pathogenesis of S. aureus endocarditis. Nevertheless, the rate of endocarditis with clumping factor-defective mutants increased with larger inocula, indicating the contribution of additional pathogenic determinants in the infective process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential pathogenicity of selected (potentially) probiotic and clinical isolates of Lactobacillus rhamnosus and Lactobacillus paracasei was investigated in a rat model of experimental endocarditis. In addition, adhesion properties of the lactobacilli for fibrinogen, fibronectin, collagen and laminin, as well as the killing activity of the platelet-microbicidal proteins fibrinopeptide A (FP-A) and connective tissue activating peptide 3 (CTAP-3), were assessed. The 90 % infective dose (ID(90)) of the L. rhamnosus endocarditis isolates varied between 10(6) and 10(7) c.f.u., whereas four of the six (potentially) probiotic L. rhamnosus isolates showed an ID(90) that was at least 10-fold higher (10(8) c.f.u.) (P<0.001). In contrast, the two other probiotic L. rhamnosus isolates exhibited an ID(90) (10(6) and 10(7) c.f.u.) comparable to the ID(90) of the clinical isolates of this species investigated (P>0.05). Importantly, these two probiotic isolates shared the same fluorescent amplified fragment length polymorphism cluster type as the clinical isolate showing the lowest ID(90) (10(6) c.f.u.). L. paracasei tended to have a lower infectivity than L. rhamnosus (ID(90) of 10(7) to > or =10(8) c.f.u.). All isolates had comparable bacterial counts in cardiac vegetations (P>0.05). Except for one L. paracasei strain adhering to all substrates, all tested lactobacilli adhered only weakly or not at all. The platelet peptide FP-A did not show any microbicidal activity against the tested lactobacilli, whereas CTAP-3 killed the majority of the isolates. In general, these results indicate that probiotic lactobacilli display a lower infectivity in experimental endocarditis compared with true endocarditis pathogens. However, the difference in infectivity between L. rhamnosus endocarditis and (potentially) probiotic isolates could not be explained by differences in adherence or platelet microbicidal protein susceptibility. Other disease-promoting factors may exist in these organisms and warrant further investigation.