848 resultados para Back Muscles
Resumo:
Evaluating the ability to rectify and maintain lumbar adjustment can contribute toward the understanding of the behavior of abdominal muscles and their participation in the stability of pelvic muscles in dancers during the posterior pelvic tilt and double straight leg lowering tests. Nine healthy volunteers (male and female ballet dancers; age mean: 25.9 ±7.37 years) underwent maximal isometric voluntary contraction (MIVC), isometric voluntary contraction at 50% of MIVC, posterior pelvic tilt (PPT) and double straight leg lowering (DSLL) tests. The tests were carried out in a single day, with 3 repetitions each. During the tests, electromygraphic signals of the rectus abdominis, obliquus internus and obliquus externus were recorded. The signal acquisition system was made up of bipolar surface electrodes, electrogoniometer and an electromechanic device (pressure sensor), which were connected to a signal conditioner module. Root mean square values of each muscle during the DSLL and PPT were converted into percentage of activation of 50% MIVC. Lower back pressure was submitted to the same process. ANOVA with repeated measures was performed, with the level of significance set at p < 0.05. The results revealed that all dancers were able to maintain posterior pelvic tilt and there was trend toward greater activation of the bilateral obliquus internus muscle. In an attempt to keep the pelvic region stabilized during DSLL, there was a greater contribution from the obliquus externus muscle in relation to other abdominal muscles.
Resumo:
This study aimed to analyze the electromyographic (EMG) activity of iliocostalis lumborum (IL), internal oblique (IO) and multifidus (MU) and the antagonist cocontraction (IO/MU and IO/IL) during the performance of Centering Principle of Pilates Method. Participating in this study were eighteen young and physically fit volunteers, without experience in Pilates Method, divided in two groups: low back pain group (LBPG, n = 8) and control group (CG, n = 10). Two isometric contractions of IO muscles (Centering Principle) were performed in upright sitting posture. EMG signal amplitude was calculated by Root Mean Square (RMS), which was normalized by RMS maximum value. The common area method to calculate the antagonist cocontraction index was used. MU and IO activation and IO/MU cocontraction (. p < 0.05) were higher in CG. The CG therefore showed a higher stabilizer muscles recruitment than LBPG during the performance of Centering Principle of Pilates Method. © 2012 Elsevier Ltd.
Resumo:
Background: Investigation and discrimination of neuromuscular variables related to the complex aetiology of low back pain could contribute to clarifying the factors associated with symptoms. Objective: Analysing the discriminative power of neuromuscular variables in low back pain. Methods: This study compared muscle endurance, proprioception and isometric trunk assessments between women with low back pain (LBP, n=14) and a control group (CG, n=14). Multivariate analysis of variance and discriminant analysis of the data were performed. Results: The muscle endurance time (s) was shorter in the LBP group than in the CG (p=0.004) with values of 85.81 (37.79) and 134.25 (43.88), respectively. The peak torque (Nm/kg) for trunk extension was 2.48 (0.69) in the LBP group and 3.56 (0.88) in the GG (p=0.001); for trunk flexion, the mean torque was 1.49 (0.40) in the LBP group and 1.85 (0.39) in the CG (p=0.023). The repositioning error (degrees) before the endurance test was 2.66 (1.36) in the LBP group and 2.41 (1.46) in the CG (p=0.664), and after the endurance test, it was 2.95 (1.94) in the LBP group and 2.00 (1.16) in the CG (p=0.06). Furthermore, the variables showed discrimination between the groups (p=0.007), with 78.6% of the individuals with low back pain correctly classified in the LBP group. In turn, variables related to muscle activation showed no difference in discrimination between the groups (p=0.369). Conclusion: Based on these findings, the clinical management of low back pain should consist of both resistance and strength training, particularly in the extensor muscles.
Resumo:
Chronic low back pain is a difficult condition to be treated. As some patients respond positively to treatment and others do not present any improvements, one can think there are others conditional factors that need to be elucidated. By means of this study, we sought to investigate the association between the occurrence of the formation of a positive relationship between patient and therapist, assessed by the therapeutic alliance inventory, and the adequate recruitment of the deep abdominal muscles, as well as to verify the effect of a protocol intervention based on motor control exercises on levels of pain and disability. The recruitment of the transverse abdominal and internal oblique muscles was examined by ultrasound imaging in 12 subjects with nonspecific chronic low back pain before and after implementation of a protocol for motor control exercises, with subsequent application of the therapeutic alliance inventory questionnaire. No association was found between the level of therapist/patient alliance and muscle recruitment. The proposed protocol was effective in reducing the levels of pain and disability; however, recruitment of transverse abdominal and internal oblique muscles showed no significant changes in the end of the intervention. Based on these findings, we verified that the therapeutic alliance has no association with muscle recruitment in the short term. However, although there were no changes in muscle recruitment after the intervention program, the level of pain and disability was reduced.
Resumo:
Objective: The purpose of this study was to compare the effects of 2 exercise programs, segmental stabilization exercises (SSEs) and stretching of trunk and hamstrings muscles, on functional disability, pain, and activation of the transversus abdominis muscle (TrA), in individuals with chronic low back pain. Methods: A total of 30 participants were enrolled in this study and randomly assigned to 1 of 2 groups as a function of intervention. In the segmental stabilization group (SS), exercises focused on the TrA and lumbar multifidus muscles, whereas in the stretching group (ST), exercises focused on stretching the erector spinae, hamstrings, and triceps surae. Severity of pain (visual analog scale and McGill pain questionnaire) and functional disability (Oswestry disability questionnaire) and TrA muscle activation capacity (Pressure Biofeedback Unit, or PBU) were compared as a function of intervention. Interventions lasted 6 weeks, and sessions happened twice a week (30 minutes each). Analysis of variance was used for intergroup and intragroup comparisons. Results: As compared with baseline, both treatments were effective in relieving pain and improving disability (P < .001). Those in the SS group had significantly higher gains for all variables. The stretching group did not effectively activate the TrA (P = .94). Conclusion: Both techniques improved pain and reduced disability. In this study, SS was superior to muscular stretching for the measured variables associated with chronic low back pain. (J Manipulative Physiol Ther 2012;35:279-285)
Resumo:
Paravertebral lumbar muscles are important for spine stabilization and mobility. They may be abnormal in several disorders that may be associated with pain or functional impairment. Special attention should be paid to the paravertebral muscles during imaging, so that a possible muscular disease is not overlooked, especially in patients with low back pain. This article reviews such imaging abnormalities.
Resumo:
The aim was to investigate the effect of mechanical pain stimulation at the lower back on hemodynamic and oxygenation changes in the prefrontal cortex (PFC) assessed by functional near-infrared spectroscopy (fNIRS) and on the partial pressure of end-tidal carbon dioxide ( PetCO 2) measured by capnography. 13 healthy subjects underwent three measurements (M) during pain stimulation using pressure pain threshold (PPT) at three locations, i.e., the processus spinosus at the level of L4 (M1) and the lumbar paravertebral muscles at the level of L1 on the left (M2) and the right (M3) side. Results showed that only in the M2 condition the pain stimulation elicited characteristic patterns consisting of (1) a fNIRS-derived decrease in oxy- and total hemoglobin concentration and tissue oxygen saturation, an increase in deoxy-hemoglobin concentration, (2) a decrease in the PetCO 2 response and (3) a decrease in coherence between fNIRS parameters and PetCO 2 responses in the respiratory frequency band (0.2-0.5 Hz). We discuss the comparison between M2 vs. M1 and M3, suggesting that the non-significant findings in the two latter measurements were most likely subject to effects of the different stimulated tissues, the stimulated locations and the stimulation order. We highlight that PetCO 2 is a crucial parameter for proper interpretation of fNIRS data in experimental protocols involving pain stimulation. Together, our data suggest that the combined fNIRS-capnography approach has potential for further development as pain monitoring method, such as for evaluating clinical pain treatment.
Resumo:
Many studies have identified changes in trunk muscle recruitment in clinical low back pain (LBP). However, due to the heterogeneity of the LBP population these changes have been variable and it has been impossible to identify a cause-effect relationship. Several studies have identified a consistent change in the feed-forward postural response of transversus abdominis (TrA), the deepest abdominal muscle, in association with arm movements in chronic LBP. This study aimed to determine whether the feedforward recruitment of the trunk muscles in a postural task could be altered by acute experimentally induced LBP. Electromyographic (EMG) recordings of the abdominal and paraspinal muscles were made during arm movements in a control trial, following the injection of isotonic (non-painful) and hypertonic (painful) saline into the longissimus muscle at L4, and during a 1-h follow-up. Movements included rapid arm flexion in response to a light and repetitive arm flexion-extension. Temporal and spatial EMG parameters were measured. The onset and amplitude of EMG of most muscles was changed in a variable manner during the period of experimentally induced pain. However, across movement trials and subjects the activation of TrA was consistently reduced in amplitude or delayed. Analyses in the time and frequency domain were used to confirm these findings. The results suggest that acute experimentally induced pain may affect feedforward postural activity of the trunk muscles. Although the response was variable, pain produced differential changes in the motor control of the trunk muscles, with consistent impairment of TrA activity.
Resumo:
Chronic unremittent low back pain (LBP) is characterised by cognitive barriers to treatment. Combining a motor control training approach with individualised education about pain physiology is effective in this group of patients. This randomized comparative trial (i) evaluates an approach to motor control acquisition and training that considers the complexities of the relationship between pain and motor output, and (ii) compares the efficacy and cost of individualized and group pain physiology education. After an "ongoing usual treatment" period, patients participated in a 4-week motor control and pain physiology education program. Patients received four one-hour individualized education sessions (IE) or one 4-hour group lecture (GE). Both groups reduced pain (numerical rating scale) and disability (Roland Morris Disability Questionnaire). IE showed bigger decreases, which were maintained at 12 months (P < 0.05 for all). The combined motor control and education approach is effective. Although group education imparts a lesser effect, it may be more cost-efficient. [ABSTRACT FROM AUTHOR]
Resumo:
Exercise is commonly used in the management of chronic musculoskeletal conditions, including chronic low back pain (CLBP). The focus of exercise is varied and may include parameters ranging from strength and endurance training, to specific training of muscle coordination and control. The assumption underpinning these approaches is that improved neuromuscular function will restore or augment the control and support of the spine and pelvis. In a biomechanical model of CLBP, which assumes that pain recurrence is caused by repeated mechanical irritation of pain sensitive structures [1], it is proposed that this improved control and stability would reduce mechanical irritation and lead to pain relief [1]. Although this model provides explanation for the chronicity of LBP, perpetuation of pain is more complex, and contemporary neuroscience holds the view that chronic pain is mediated by a range of changes including both peripheral (eg, peripheral sensitization) and central neuroplastic changes [2]. Although this does not exclude the role of improved control of the lumbar spine and pelvis in management of CLBP, particularly when there is peripheral sensitization, it highlights the need to look beyond outdated simplistic models. One factor that this information highlights is that the refinement of control and coordination may be more important than simple strength and endurance training for the trunk muscles. The objective of this article is to discuss the rationale for core stability exercise in the management of CLBP, to consider critical factors for its implementation, and to review evidence for efficacy of the approach.
Resumo:
The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed (p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.
Resumo:
The pelvic floor muscles (PFM) are part of the trunk stability mechanism. Their function is interdependent with other muscles of this system. They also contribute to continence, elimination, sexual arousal and intra-abdominal pressure. This paper outlines some aspects of function and dysfunction of the PFM complex and describes the contribution of other trunk muscles to these processes. Muscle pathophysiology of stress urinary incontinence (SUI) is described in detail. The innovative rehabilitation programme for SUI presented here utilizes abdominal muscle action to initiate tonic PFM activity. Abdominal muscle activity is then used in PFM strengthening, motor relearning for functional expiratory actions and finally impact training. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Study Design. Cross-sectional study. Objective. The present study compared activity of deep and superficial cervical flexor muscles and craniocervical flexion range of motion during a test of craniocervical flexion between 10 patients with chronic neck pain and 10 controls. Summary of Background Data. Individuals with chronic neck pain exhibit reduced performance on a test of craniocervical flexion, and training of this maneuver is effective in management of neck complaints. Although this test is hypothesized to reflect dysfunction of the deep cervical flexor muscles, this has not been tested. Methods. Deep cervical flexor electromyographic activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the superficial neck muscles ( sternocleidomastoid and anterior scalene). Root mean square electromyographic amplitude and craniocervical flexion range of motion was measured during five incremental levels of craniocervical flexion in supine. Results. There was a strong linear relation between the electromyographic amplitude of the deep cervical flexor muscles and the incremental stages of the craniocervical flexion test for control and individuals with neck pain ( P = 0.002). However, the amplitude of deep cervical flexor electromyographic activity was less for the group with neck pain than controls, and this difference was significant for the higher increments of the task ( P < 0.05). Although not significant, there was a strong trend for greater sternocleidomastoid and anterior scalene electromyographic activity for the group with neck pain. Conclusions. These data confirm that reduced performance of the craniocervical flexion test is associated with dysfunction of the deep cervical flexor muscles and support the validity of this test for patients with neck pain.
Resumo:
Study Design. Quiet stance on supporting bases with different lengths and with different visual inputs were tested in 24 study participants with chronic low back pain (LBP) and 24 matched control subjects. Objectives. To evaluate postural adjustment strategies and visual dependence associated with LBP. Summary of Background Data. Various studies have identified balance impairments in patients with chronic LBP, with many possible causes suggested. Recent evidence indicates that study participants with LBP have impaired trunk muscle control, which may compromise the control of trunk and hip movement during postural adjustments ( e. g., hip strategy). As balance on a short base emphasizes the utilization of the hip strategy for balance control, we hypothesized that patients with LBP might have difficulties standing on short bases. Methods. Subjects stood on either flat surface or short base with different visual inputs. A task was counted as successful if balance was maintained for 70 seconds during bilateral stance and 30 seconds during unilateral stance. The number of successful tasks, horizontal shear force, and center-of-pressure motion were evaluated. Results. The hip strategy was reduced with increased visual dependence in study participants with LBP. The failure rate was more than 4 times that of the controls in the bilateral standing task on short base with eyes closed. Analysis of center-of-pressure motion also showed that they have inability to initiate and control a hip strategy. Conclusions. The inability to control a hip strategy indicates a deficit of postural control and is hypothesized to result from altered muscle control and proprioceptive impairment.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.